...
首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Estimating the time of melt onset and freeze onset over Arctic sea-ice area using active and passive microwave data
【24h】

Estimating the time of melt onset and freeze onset over Arctic sea-ice area using active and passive microwave data

机译:使用主动和被动微波数据估算北极海冰区域融化开始和冻结开始的时间

获取原文
获取原文并翻译 | 示例
           

摘要

Accurate calculation of the time of melt onset, freeze onset, and melt duration over Arctic sea-ice area is crucial for climate and global change studies because it affects accuracy of surface energy balance estimates. This comparative study evaluates several methods used to estimate sea-ice melt and freeze onset dates: (1) the melt onset database derived from SSM/I passive microwave brightness temperatures (T{sub}b s) using Drobot and Anderson's [J. Geophys. Res. 106 (2001) 24033] Advanced Horizontal Range Algorithm (AHRA) and distributed by the National Snow and Ice Data Center (NSIDC); (2) the International Arctic Buoy Program/Polar Exchange at the Sea (IABP/POLES) surface air temperatures (SATs); (3) an elaborated version of the AHRA that uses IABP/POLES to avoid anomalous results (Passive Microwave and Surface Temperature Analysis [PMSTA]); (4) another elaborated version of the AHRA that uses T{sub}b variance to avoid anomalous results (Mean Differences and Standard Deviation Analysis [MDSDA]); (5) Smith's [J. Geophys. Res. 103 (1998) 27753] vertically polarized T{sub}b algorithm for estimating melt onset in multiyear (MY) ice (SSM/I 19V-37V); and (6) analyses of concurrent backscattering cross section (σ°) and brightness temperature (T{sub}b) from OKEAN-01 satellite series. Melt onset and freeze onset maps were created and compared to understand how the estimates vary between different satellite instruments and methods over different Arctic sea-ice regions. Comparisons were made to evaluate relative sensitivities among the methods to slight adjustments of the T{sub}b calibration coefficients and algorithm threshold values. Compared to the PMSTA method, the AHRA method tended to estimate significantly earlier melt dates, likely caused by the AHRA's susceptibility to prematurely identify melt onset conditions. In contrast, the IABP/POLES surface air temperature data tended to estimate later melt and earlier freeze in all but perennial ice. The MDSDA method was least sensitive to small adjustments of the SMMR-SSM/I inter-satellite calibration coefficients. Differences among methods varied by latitude. Freeze onset dates among methods were most disparate in southern latitudes, and tended to converge northward. Surface air temperatures (IABP/ POLES) indicated freeze onset well before the MDSDA method, especially in southern peripheral seas, while PMSTA freeze estimates were generally intermediate. Surface air temperature data estimated latest melt onset dates in southern latitudes, but earliest melt onset in northern latitudes. The PMSTA estimated earliest melt onset dates in southern regions, and converged with the MDSDA northward. Because sea-ice melt and freeze are dynamical transitional processes, differences among these methods are associated with differing sensitivities to changing stages of environmental and physical development. These studies contribute to the growing body of documentation about the levels of disparity obtained when Arctic seasonal transition parameters are estimated using various types of microwave data and algorithms.
机译:准确计算北极海冰地区融化开始时间,冻结开始时间和融化持续时间对于气候和全球变化研究至关重要,因为它会影响表面能平衡估计的准确性。这项比较研究评估了几种用于估计海冰融化和冰冻开始日期的方法:(1)使用Drobot和Anderson's [J. Chem.Sci。,2002]从SSM / I被动微波亮度温度(T {sub} b s)得出的融化开始数据库。地理学。 Res。 106(2001)24033]高级水平范围算法(AHRA),由美国国家冰雪数据中心(NSIDC)分发; (2)国际北极浮标计划/海上极地交换(IABP / POLES)地表气温(SATs); (3)AHRA的详细版本,使用IABP / POLES避免异常结果(无源微波和表面温度分析[PMSTA]); (4)AHRA的另一个详细版本,该版本使用T {sub} b方差来避免异常结果(均值差异和标准偏差分析[MDSDA]); (5)史密斯[地理学。 Res。 103(1998)27753]垂直极化的T {sub} b算法,用于估算多年(MY)冰中的融化开始(SSM / I 19V-37V); (6)分析来自OKEAN-01卫星系列的同时反向散射截面(σ°)和亮度温度(T {sub} b)。创建并比较了融化起始图和冻结起始图,以了解估算值在不同北极海冰地区的不同卫星仪器和方法之间如何变化。进行比较以评估这些方法之间对T {sub} b校准系数和算法阈值的轻微调整的相对敏感性。与PMSTA方法相比,AHRA方法倾向于估计明显更早的熔解日期,这可能是由于AHRA对过早识别熔体开始条件的敏感性造成的。相比之下,IABP / POLES地表气温数据倾向于估算除多年生冰以外的所有冰块中后来的融化和更早的冻结。 MDSDA方法对SMMR-SSM / I卫星间校准系数的细微调整最不敏感。方法之间的差异因纬度而异。方法的冻结起始日期在南部纬度上最不相同,并且倾向于向北收敛。地表空气温度(IABP / POLES)表明,在MDSDA方法之前,尤其是在南部外围海域,冻结发生的时间很早,而PMSTA的冻结估计通常处于中间水平。地表空气温度数据估计,最新的融化开始于南部纬度,但最早的融化开始于北纬。 PMSTA估计南部地区最早的融化发生日期,并与MDSDA向北汇合。由于海冰融化和冻结是动态的过渡过程,因此这些方法之间的差异与对环境和物理发展阶段变化的敏感性不同有关。这些研究为有关使用各种类型的微波数据和算法估算北极季节性过渡参数时获得的视差水平的文献不断增加做出了贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号