首页> 外文期刊>Remote Sensing of Environment: An Interdisciplinary Journal >Comparison of fire temperature and fractional area modeled from SWIR, MIR, and TIR multispectral and SWIR hyperspectral airborne data
【24h】

Comparison of fire temperature and fractional area modeled from SWIR, MIR, and TIR multispectral and SWIR hyperspectral airborne data

机译:从SWIR,MIR和TIR多光谱和SWIR高光谱机载数据建模的火灾温度和分数区域的比较

获取原文
获取原文并翻译 | 示例
           

摘要

Spectral mixture modeling has previously been used to retrieve fire temperature and fractional area from multiband radiance data containing emitted radiance from fires. While this type of temperature modeling has potential for improving understanding of fire behavior and emissions, modeled temperature and fractional area may depend on the wavelength region used for modeling. Using airborne hyperspectral (Airborne Visible Infrared Imaging Spectrometer; AVIRIS) and multispectral (MODIS/ASTER Airborne Simulator; MASTER) data acquired simultaneously over the 2008 Indians Fire in California, we examined changes in modeled fire temperature and fractional area that occurred when input wavelength regions were varied. Temperature and fractional area modeled from multiple MASTER runs were directly compared. Incompatible spatial resolutions prevented direct comparison of the AVIRIS and MASTER model runs, so total area modeled at each temperature was used to indirectly compare temperature and fractional area retrieved from these two sensors. AVIRIS and MASTER model runs using shortwave infrared (SWIR) bands produced consistent fire temperatures and fractional areas when modeled temperatures exceeded 800. K. Temperatures and fire fractional areas were poorly correlated for temperatures below 800. K and when the SWIR bands were excluded as model inputs. The single temperature blackbody assumption commonly used in mixing model retrieval of fire temperature is potentially useful for modeling higher temperature fires, but is likely not valid for lower temperature smoldering combustion due to mixed radiance from multiple fuel elements combusting at different temperatures. SWIR data contain limited emitted radiance from combustion at lower temperatures, and are thus essential for consistent modeling of fire temperature and fractional area at higher fire temperatures.
机译:以前,光谱混合建模已用于从包含火灾发射辐射的多波段辐射数据中检索火灾温度和分数区域。尽管此类温度建模具有改善对火行为和排放的理解的潜力,但建模温度和分数面积可能取决于用于建模的波长区域。使用在2008年加利福尼亚州印第安人大火中同时获取的机载高光谱数据(机载可见红外成像光谱仪; AVIRIS)和多光谱数据(MODIS / ASTER机载模拟器; MASTER),我们研究了当输入波长区域时,模型化的火灾温度和分数区域的变化各种各样。直接比较了多次MASTER运行模拟的温度和分数面积。不兼容的空间分辨率阻止了AVIRIS和MASTER模型运行的直接比较,因此在每个温度下建模的总面积用于间接比较从这两个传感器获取的温度和分数面积。当模型温度超过800. K时,使用短波红外(SWIR)波段进行的AVIRIS和MASTER模型运行产生一致的着火温度和分数区域。对于低于800. K的温度,并且将SWIR波段排除在模型之外,温度和着火分数区域的相关性很差。输入。通常在火灾温度的混合模型检索中使用的单一温度黑体假设可能可用于对高温火灾进行建模,但由于来自多个燃料元件的混合辐射在不同温度下燃烧产生的混合辐射,可能不适用于较低温度的阴燃。 SWIR数据包含较低温度下燃烧产生的有限辐射辐射,因此对于在较高火灾温度下一致地模拟火灾温度和分数区域至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号