首页> 外文期刊>Rapid Communications in Mass Spectrometry: RCM >Error-systematics of determining elemental isotopic abundance ratios by the molecular ion beam method: a case study for the simultaneous isotopic analysis of lithium and boron as Li2BO2+
【24h】

Error-systematics of determining elemental isotopic abundance ratios by the molecular ion beam method: a case study for the simultaneous isotopic analysis of lithium and boron as Li2BO2+

机译:分子离子束法测定元素同位素丰度比的误差系统:以锂和硼作为Li2BO2 +的同位素同时分析为例

获取原文
获取原文并翻译 | 示例
           

摘要

The simultaneous isotopic analysis of lithium and boron by the Li2BO2+ ion beam method involves measurements of two different molecular abundance ratios (say, R-j +/- delta(j) and R-k +/- delta(k)) and subsequently extensive calculations to arrive at the analyte isotopic ratios (say, L and Y), It is not presently known how the measurement errors (delta(j) and delta(k)) are transformed into the errors of analysis (delta(L) and delta(Y)). This work addresses this question from fundamental considerations. In the literature, the calculations are sometimes simplified using Ri formulae based on Li2B16O2+: ions and then applying correction factors for the actual Li2BO2+ ions, but this procedure is not generally applicable. We show how equations based on true Li2BO2+ ions (with full isotopic variations of all the constituent elements) can be solved, and illustrate the procedure with several examples. These studies show that accuracy of analysis depends not only on the accuracies of measurements, delta(j) and delta(k), but also on the particular isotopic Li2BO2+ ion-pairs (j and k) used as the monitor pairs. Moreover, this dependence is shown to be different for the different isotopic ratios (L and Y) to be determined simultaneously, Therefore, proper selection of monitor molecular pairs Is a requirement for avoiding larger (propagated) errors in the analysis. Similar arguments would, in fact, apply to any arbitrarily chosen case of determining two or an even greater number of isotopic abundance ratios (E-i's) by the molecular ion beam method, irrespective of whether the different analyte ratios, E-i's, relate to a single multi-isotopic element, or different elements. Copyright (C) 2000 John Wiley gr Sons, Ltd. [References: 23]
机译:通过Li2BO2 +离子束方法同时进行锂和硼的同位素分析,需要测量两个不同的分子丰度比(例如Rj +/- delta(j)和Rk +/- delta(k)),然后进行大量计算,得出分析物同位素比率(例如L和Y),目前尚不知道如何将测量误差(delta(j)和delta(k))转换为分析误差(delta(L)和delta(Y)) 。这项工作从根本上考虑了这个问题。在文献中,有时会使用基于Li2B16O2 +:离子的Ri公式简化计算过程,然后对实际的Li2BO2 +离子应用校正因子,但是此过程通常不适用。我们展示了如何求解基于真正的Li2BO2 +离子的方程(所有组成元素都有完全的同位素变化),并用几个示例说明了该过程。这些研究表明,分析的准确性不仅取决于测量的精度delta(j)和delta(k),而且还取决于用作监测器对的特定同位素Li2BO2 +离子对(j和k)。此外,对于要同时确定的不同同位素比率(L和Y),这种依赖性显示出不同。因此,正确选择监测分子对是避免分析中更大(传播)误差的要求。实际上,类似的论点将适用于通过分子离子束方法确定两个或更多个同位素丰度比(E-i)的任意选择的情况,而不管不同分析物比率E-i是否相关一个单一的多同位素元素或不同的元素。版权所有(C)2000 John Wiley gr Sons,Ltd. [引用:23]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号