...
首页> 外文期刊>Cell biochemistry and biophysics >A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers.
【24h】

A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers.

机译:纤维蛋白纤维与其他蛋白质纤维的机械和结构性能的比较。

获取原文
获取原文并翻译 | 示例
           

摘要

In the past few years a great deal of progress has been made in studying the mechanical and structural properties of biological protein fibers. Here, we compare and review the stiffness (Young's modulus, E) and breaking strain (also called rupture strain or extensibility, epsilon(max)) of numerous biological protein fibers in light of the recently reported mechanical properties of fibrin fibers. Emphasis is also placed on the structural features and molecular mechanisms that endow biological protein fibers with their respective mechanical properties. Generally, stiff biological protein fibers have a Young's modulus on the order of a few Gigapascal and are not very extensible (epsilon(max) < 20%). They also display a very regular arrangement of their monomeric units. Soft biological protein fibers have a Young's modulus on the order of a few Megapascal and are very extensible (epsilon(max) > 100%). These soft, extensible fibers employ a variety of molecular mechanisms, such as extending amorphous regions or unfolding protein domains, to accommodate large strains. We conclude our review by proposing a novel model of how fibrin fibers might achieve their extremely large extensibility, despite the regular arrangement of the monomeric fibrin units within a fiber. We propose that fibrin fibers accommodate large strains by two major mechanisms: (1) an alpha-helix to beta-strand conversion of the coiled coils; (2) a partial unfolding of the globular C-terminal domain of the gamma-chain.
机译:在过去的几年中,在研究生物蛋白纤维的机械和结构特性方面取得了很大的进步。在这里,我们根据最近报道的纤维蛋白纤维的机械性能,比较和审查许多生物蛋白纤维的刚度(杨氏模量,E)和断裂应变(也称为断裂应变或可扩展性,ε(最大值))。重点还放在赋予生物蛋白纤维相应机械性能的结构特征和分子机理上。通常,坚硬的生物蛋白纤维的杨氏模量约为几千兆帕斯卡,并且不是很容易伸长(ε(max)<20%)。它们还显示出非常规则的单体单元排列。柔软的生物蛋白纤维的杨氏模量约为几兆帕斯卡,并且极易延伸(ε(max)> 100%)。这些柔软的,可延展的纤维利用各种分子机制,例如延伸无定形区域或展开蛋白质结构域,以适应较大的菌株。我们通过提出一种新的模型来结束我们的综述,尽管纤维中单体纤维蛋白单元的排列规则如何,但纤维蛋白纤维如何实现极大的可扩展性。我们建议纤维蛋白纤维通过两个主要机制适应大应变:(1)盘绕线圈的α-螺旋向β-链的转化; (2)γ链的球状C末端结构域的部分展开。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号