...
首页> 外文期刊>Reaction Chemistry & Engineering >Saccharification of thermochemically pretreated cellulosic biomass using native and engineered cellulosomal enzyme systems
【24h】

Saccharification of thermochemically pretreated cellulosic biomass using native and engineered cellulosomal enzyme systems

机译:使用天然和工程纤维素酶系统糖化热化学预处理的纤维素生物质

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Consolidated bioprocessing (CBP) of pretreated lignocellulosic biomass using microbes like Clostridium thermocellum allows simultaneous polysaccharide saccharification and sugar fermentation to produce fuels or chemicals using a one-pot process. C. thermocellum is a thermophilic bacterium that deconstructs biomass using large multi-enzyme complexes called cellulosomes. Characterization of cellulosomal enzymes tethered to native or engineered scaffoldin proteins has revealed that enzyme complexation is critical to the bacterium's cellulolytic ability. However, we have a limited understanding of the impact of enzyme complexation on the saccharification efficiency of various forms of industrially relevant pretreated biomass substrates. Here, we compared the hydrolytic activity of the most abundant cellulosomal enzymes from C. thermocellum and investigate the importance of enzyme complexation using a model engineered protein scaffold (called ‘rosettasome’). The hydrolytic performance of non-complexed enzymes, enzymerosettasome (or rosettazyme) complexes, and cellulosomes was tested on distinct cellulose allomorphs formed during biomass pretreatment. The scaffold-immobilized enzymes always gave higher activity than free enzymes. However, cellulosomes exhibited higher activity than rosettazyme complexes. This was likely due to the greater flexibility of the native versus engineered scaffold, as deciphered using small angle X-ray scattering. Surprisingly, scaffold-tethered enzymes also gave comparable activity on all the cellulose allomorphs tested, which is unlike the preferential activity of non-complexed cellulases seen for certain allomorph forms. Tethered enzyme complexes also gave lower saccharification yields on industrially relevant lignin-rich switchgrass than cellulose alone. In summary, we find that the type of pretreatment can significantly impact the saccharification efficiency of cellulosomal enzymes for various CBP scenarios.
机译:使用诸如热纤梭菌的微生物对预处理的木质纤维素生物质进行整合生物处理(CBP),可以同时进行多糖糖化和糖发酵,从而使用一锅法生产燃料或化学品。嗜热梭状芽胞杆菌是一种嗜热细菌,它利用称为纤维素体的大型多酶复合物解构生物质。拴系到天然或工程支架蛋白上的纤维素酶的表征表明,酶的复合对于细菌的纤维素分解能力至关重要。但是,我们对酶络合对各种形式的工业相关预处理生物质底物的糖化效率的影响了解有限。在这里,我们比较了热纤梭菌中最丰富的纤维素酶的水解活性,并使用模型工程蛋白支架(称为“ rosettasome”)研究了酶络合的重要性。在生物质预处理过程中形成的不同纤维素同种异形体上测试了非复合酶,酶胶体(或玫瑰糖酶)复合物和纤维素体的水解性能。固定有支架的酶总是比游离酶具有更高的活性。但是,纤维素体显示出比蔷薇酶复合物更高的活性。这可能是由于使用小角度X射线散射所解密的天然支架与工程支架相比具有更大的灵活性。出人意料的是,支架连接的酶对所有测试的纤维素同种异形体也具有可比的活性,这与某些同种异形体形式的非复合纤维素酶的优先活性不同。束缚酶复合物在工业上相关的富含木质素的柳枝switch上的糖化产率也比单独的纤维素低。总而言之,我们发现预处理的类型可以显着影响纤维素酶在各种CBP情况下的糖化效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号