...
首页> 外文期刊>Disease markers >Cyclophosphamide Attenuates Fibrosis in Lupus Nephritis by Regulating Mesangial Cell Cycle Progression
【24h】

Cyclophosphamide Attenuates Fibrosis in Lupus Nephritis by Regulating Mesangial Cell Cycle Progression

机译:

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Objectives. Most patients with systemic lupus erythematosus (SLE) develop lupus nephritis (LN) with severe kidney manifestations. Renal fibrosis can be primarily attributed to overproliferation of mesangial cells (MCs), which are subject to drug treatment. Nevertheless, the detailed mechanisms remain elusive. We sought to identify the effect of cyclophosphamide (CTX), a drug commonly used for LN treatment, on MC proliferation and explore its underlying mechanisms. Material/Methods. Cell proliferation and fibrosis in mouse kidney tissues were determined by histopathology staining techniques. Flow cytometry was used for cell cycle analysis. Cell cycle regulators were examined in vitro following treatment of immortalized human MCs with platelet-derived growth factor subunit B (PDGF-B). Quantitative real-time PCR and western blot analyses were used to measure the mRNA and protein levels of candidate cell cycle regulators, respectively. Results. CTX inhibited cell overproliferation induced by platelet-derived growth factor subunit B in vitro and in vivo. CTX (40mg/l) was sufficient to induce G0/G1 phase cell cycle arrest. CTX treatment downregulated many critical cell cycle regulators including cyclins and cyclin-dependent kinases but upregulated cyclin-dependent kinase inhibitors. Additionally, CTX-treated samples showed significantly reduced fibrosis, as indicated by lower expression of interleukin-1β and a-smooth muscle actin. Conclusion. CTX inhibits proliferation of MCs by modulating cell cycle regulator and therefore arresting them at G1 phase. CTX treatment significantly alleviates the severity of renal fibrosis. These findings provide novel insights into the mechanisms by which CTX affects LN.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号