首页> 外文期刊>Linear Algebra and its Applications >Tridiagonal pairs of q-Racah type, the double lowering operator ψ, and the quantum algebra U_q(sl_2)
【24h】

Tridiagonal pairs of q-Racah type, the double lowering operator ψ, and the quantum algebra U_q(sl_2)

机译:q-Racah型三对角对,双下降算子ψ和量子代数U_q(sl_2)

获取原文
获取原文并翻译 | 示例
       

摘要

Let K denote an algebraically closed field and let V denote a vector space over K with finite positive dimension. We consider an ordered pair of linear transformations A: V → V and A*: V → V that satisfy the following four conditions: (i) Each of A, A* is diagonalizable; (ii) there exists an ordering {V_i}_(i=0)~d of the eigenspaces of A such that A*V_i ? V_(i-1) + V_i + V_(i+1) for 0 ≤ i ≤ d, where V_(-i) = 0 and V_(d+1) = 0; (iii) there exists an ordering {V_i~* }_(i=0)~δ of the eigenspaces of A* such that AV_i~* ? V_(i-1)~* + V_i~* + V_(i+1)~* for 0 ≤i ≤ δ, where V~(-1)~*= 0 and V_(δ+1)~*=0; (iv) there does not exist a subspace W of V such that AW ? W, A~*W ? W, W ≠ 0, W ≠ V. We call such a pair a tridiagonal pair on V. It is known that d = δ; to avoid trivialities assume d ≥ 1. We assume that A, A* belongs to a family of tridiagonal pairs said to have q-Racah type. This is the most general type of tridiagonal pair. Let {U_i}_(i=0)~d and {U_i~↓}_(i=0)~d denote the first and second split decompositions of V. In an earlier paper we introduced the double lowering operator ψ: V → V. One feature of ψ is that both ψU_i ? U_(i-1) and ψU_i~↓? U_(i-1)~↓ for 0 ≤i ≤ d, where U_(-1) = 0 and U_(-i)~↓= 0. Define linear transformations K: V → V and B: V → V such that (K - q~(d-2i)I)U_i = 0 and (B - q~(d-2i)I)U_i~↓ = 0 for 0 ≤i≤ d. Our results are summarized as follows. Using ψ, K, B we obtain two actions of U_q(sl_2) on V. For each of these U_q(sl_2)-module structures, the Chevalley generator e acts as a scalar multiple of ψ. For each of the U_q (sl_2)-module structures, we compute the action of the Casimir element on V. We show that these two actions agree. Using this fact, we express ψ as a rational function of K~(±1), B~(±1) in several ways. Eliminating ψ from these equations we find that K and B are related by a quadratic equation.
机译:令K表示代数封闭场,令V表示K上具有有限正维的向量空间。我们考虑满足以下四个条件的一对有序线性变换A:V→V和A *:V→V:(i)A,A *中的每一个都是对角线的; (ii)A的本征空间存在一个排序{V_i} _(i = 0)〜d,使得A * V_i?当0≤i≤d时V_(i-1)+ V_i + V_(i + 1),其中V _(-i)= 0且V_(d + 1)= 0; (iii)存在A *的本征空间的有序{V_i〜*} _(i = 0)〜δ,使得AV_i〜*? V_(i-1)〜* + V_i〜* + V_(i + 1)〜*对于0≤i≤δ,其中V〜(-1)〜* = 0且V_(δ+ 1)〜* = 0 ; (iv)不存在V的子空间W使得AW? W,A〜* W? W,W≠0,W≠V。我们称这样的对为V上的三对角线对。为避免琐碎性,假设d≥1。我们假设A,A *属于据说具有q-Racah类型的三对角线对。这是最常见的三对角线对。令{U_i} _(i = 0)〜d和{U_i〜↓} _(i = 0)〜d表示V的第一分裂分解和第二分裂分解。在较早的论文中,我们引入了双重降低算子ψ:V→ V.ψ的一个特征是ψU_i都? U_(i-1)和ψU_i〜↓? U_(i-1)〜↓对于0≤i≤d,其中U _(-1)= 0且U _(-i)〜↓=0。定义线性变换K:V→V和B:V→V使得对于0≤i≤d,(K-q〜(d-2i)I)U_i = 0和(B-q〜(d-2i)I)U_i〜↓= 0。我们的结果总结如下。使用ψ,K,B,我们获得V上U​​_q(sl_2)的两个作用。对于每个U_q(sl_2)-模块结构,Chevalley生成器e都是ψ的标量倍数。对于每个U_q(sl_2)-模块结构,我们计算Casimir元素对V的作用。我们证明这两个作用是一致的。利用这一事实,我们用几种方法将ψ表示为K〜(±1),B〜(±1)的有理函数。从这些方程中消除ψ,我们发现K和B与二次方程有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号