【24h】

Bruhat order of tournaments

机译:Bruhat比赛顺序

获取原文
获取原文并翻译 | 示例
       

摘要

Let M_n(C) be the set of all n-by-n matrices with complex entries. Let S_n~+ be the set of all nonsingular symmetric matrices in M_n (C), let S_n~- be the set of all nonsingular skew-symmetric matrices in M_n (C), and let S_n = S_n~+ ∪ S_n~-. Let S ∈ S_n be given. An A ∈ M_n (C) is called S-orthogonal if A~T S A = S. Let Os be the set of all S-orthogonal matrices in M_n(C). An H ∈ O_S is called a symmetry if rank(H - I) = 1. Let H_S be the set of all symmetries in O_S. We show that every Q ∈ Os is a product of elements of H_S. If Q = I, then Q is a product of two elements of H_S. Suppose that rank(Q - I) = m ≥ 1. If S(Q - I) is not skew-symmetric,then Q can be written as a product of m elements of H_S and Q cannot be written as a product of less than m elements of Hs. If S(Q - I) is skew-symmetric and if S ∈ S_n~+, then Q can be written as a product of m + 2 elements of H_S and Q cannot be written as a product of less than m + 2 elements of H_s. If S(Q - I) is skew-symmetric and if S ∈ S_n~-, then Q can be written as a product of m + 1 elements of H_S and Q cannot be written as a product of less than m + 1 elements of H_S.
机译:令M_n(C)为所有具有复杂条目的n×n矩阵的集合。令S_n〜+为M_n(C)中所有非奇异对称矩阵的集合,令S_n〜-为M_n(C)中所有非奇异偏对称矩阵的集合,令S_n = S_n〜+ S_n〜-。设S∈S_n。如果A〜T S A = S,则A∈M_n(C)称为S正交。令Os为M_n(C)中所有S正交矩阵的集合。如果rank(H-I)= 1,则H∈O_S称为对称性。设H_S为O_S中所有对称性的集合。我们证明每个Q∈Os是H_S元素的乘积。如果Q = I,则Q是H_S的两个元素的乘积,假设rank(Q-I)= m≥1。如果S(Q-I)不对称,则Q可以写为H_S的m个元素的乘积。 Q不能写成少于Hs的m个元素的乘积。如果S(Q-I)是斜对称的,并且如果S∈S_n〜+,则Q可以写成H_S的m + 2个元素的乘积。 Q不能写成H_s的少于m + 2个元素的乘积。如果S(Q-I)是斜对称的,并且如果S∈S_n〜-,那么Q可以写成m_ 1个元素的乘积。 H_S和Q不能写成少于m_ 1个H_S元素的乘积。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号