...
首页> 外文期刊>NJAS Wageningen Journal of Life Sciences >C-3 and C-4 photosynthesis models: An overview from the perspective of crop modelling
【24h】

C-3 and C-4 photosynthesis models: An overview from the perspective of crop modelling

机译:C-3和C-4光合作用模型:从作物模型的角度概述

获取原文
获取原文并翻译 | 示例

摘要

Nearly three decades ago Farquhai. von Caemmerer and Berry published a biochemical model for C-3 photosynthetic rates (the FvCB model) The model predicts net photosynthesis (A) as the minimum of the Rubisco-limited rate of CO2 assimilation (A(c)) and the electron transport-limited rate of CO2 assimilation (A(J)) Given us simplicity and the growing availability of the required enzyme kinetic constants, the FvCB model has been used for a wide range of studies, from analysing underlying C-3 leaf biochemistry to predicting photosynthetic fluxes of ecosystems in response to global warming However, surprisingly, this model has seen limited use ill existing crop growth models. Here we highlight the elegance, simplicity, and robustness of this model In the light of some uncertainties with photosynthetic electron transport pathways, a recently extended FvCB model to calculate A(J) is summarizedApplying the FvCB-type model in crop growth models for predicting leaf photosynthesis requires a stomatal conductance (g(s)) model to be incorporated, so that inter cellular CO2 concentration (C-1) can be estimated In recent years great emphasis has been put on the significant drawdown of Rubisco carboxylation-sue CO2 concentration (C-c) relative to C-1 To account for this drawdown, mesophyll conductance (g(m)) for CO2 transfer can be added We present an analytical algorithm that incorporates a g(s) model and uses g(m) as a temperature-dependent parameter for calculating A under vat ions environmental scenarios.Finally we discuss a C-4-equivalent version of the FvCB model In addition to the algorithms already elaborated for C-3 photosynthesis, most important algorithms for C-4 photosynthesis are those that capture the CO2 concentrating mechanism and the extra ATP requirement by the C-4 cycle Although the cui rent estimation of the C-4 enzyme kinetic constants is less certain, applying FvCB-type models to both C-3 and C-4 crops is recommended to accurately predict the response of crop photosynthesis to multiple, interactive environmental variables
机译:将近三十年前的法曲海。 von Caemmerer和Berry发表了有关C-3光合速率的生化模型(FvCB模型),该模型将净光合作用(A)预测为Rubisco限制的CO2同化率(A(c))和电子传递的最小值。有限的CO2同化率(A(J))鉴于我们的简单性和所需酶动力学常数的不断增长,FvCB模型已被广泛用于研究,从分析潜在的C-3叶片生物化学到预测光合通量应对全球变暖的生态系统的变化然而,令人惊讶的是,该模型发现现有作物生长模型的使用受到限制。在此我们强调该模型的优雅,简单和稳健性鉴于光合作用电子传输途径存在的一些不确定性,总结了最近扩展的FvCB模型来计算A(J),将FvCB型模型应用于作物生长模型中以预测叶片光合作用需要引入气孔电导(g(s))模型,以便可以估算细胞间的CO2浓度(C-1)。近年来,Rubisco羧化的CO2浓度显着下降( Cc)相对于C-1为了说明这一下降,可以添加用于转移CO2的叶肉电导(g(m))我们提出了一种分析算法,该算法结合了ag(s)模型并将g(m)用作温度依赖型最后,我们讨论了FvCB模型的C-4等效版本,除了已经为C-3光合作用阐述的算法外,最重要的算法f C-4或C-4光合作用是通过C-4循环捕获CO2浓缩机制和额外ATP需求的光合作用。尽管对C-4酶动力学常数的估算并不十分确定,但将FvCB型模型应用于C-建议使用3和C-4作物来准确预测作物光合作用对多种交互式环境变量的响应

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号