首页> 外文期刊>Laser Physics: An International Journal devoted to Theoretical and Experimental Laser Research and Application >Attosecond physics with neutrons and electrons: Ultrafast entanglement and decoherence phenomena involving protons in condensed matter and molecules
【24h】

Attosecond physics with neutrons and electrons: Ultrafast entanglement and decoherence phenomena involving protons in condensed matter and molecules

机译:具有中子和电子的阿秒物理学:涉及凝聚态物质和分子中质子的超快纠缠和退相干现象

获取原文
获取原文并翻译 | 示例
           

摘要

Nuclei and electrons in condensed matter and/or molecules are usually entangled, due to the prevailing electromagnetic interactions. Usually, the environment of a microscopic scattering system (e.g., a proton) causes an ultrafast decoherence, thus making atomic and/or nuclear entanglement effects not directly accessible to experiments. However, neutron Compton scattering (NCS) and electron Compton scattering represent ultrafast techniques operating in the sub-femtosecond timescale, thus opening a way for investigation of such dehoherence and short-lived entanglement phenomena of atoms in molecules and condensed matter. The experimental context of NCS and a new striking scattering effect from protons (H-atoms) in several condensed systems and molecules are described. In short, one observes an anomalous decrease of scattering intensity from protons, which seem to become partially invisible to the neutrons. The experiments apply large energy (several electronvolts) and momentum (10-200 ?~(?1) transfers, and the collisional (or scattering) time between the neutron and a struck proton is only 100-1000 attoseconds long. Similar results are also obtained with electron-atom Compton scattering at large momentum transfers. As an example, we present new NCS experimental results from a single crystal, which also provide new physical insights into the attosecond quantum dynamics of protons in molecules and condensed matter. Theoretical discussions and models are presented which show that the effect under consideration is caused by the non-unitary time evolution (due to decoherence) of open quantum systems during the ultrashort, but finite, time-window of the neutron-proton scattering process. The conceptual connection with the well known Quantum Zeno Effect is pointed out. The experimental results, together with their qualitative interpretation from first principles, show that epithermal neutrons being available at spallation sources, and electron spectrometers providing large momentum transfers, may represent novel tools for investigation of thus far unknown physical and chemical attosecond phenomena.
机译:由于普遍存在的电磁相互作用,冷凝物和/或分子中的核和电子通常会发生纠缠。通常,微观散射系统(例如,质子)的环境引起超快的退相干,因此使得原子和/或核缠结效应不能直接用于实验。然而,中子康普顿散射(NCS)和电子康普顿散射代表了在亚飞秒级的时间范围内运行的超快技术,从而为研究分子中的原子和凝聚态原子的这种消光性和短时纠缠现象开辟了道路。描述了NCS的实验背景以及质子(H原子)在几个凝聚系统和分子中产生的新的惊人散射效应。简而言之,人们观察到质子的散射强度异常降低,质子似乎对中子部分不可见。实验应用了大的能量(几个电子伏特)和动量(10-200?〜(?1)转移,中子与撞击质子之间的碰撞(或散射)时间仅为100-1000阿秒。以大动量传递下的电子-原子康普顿散射获得的晶体为例,我们给出了单晶的NCS实验结果,这也为分子和凝聚态质子的阿秒量子动力学提供了新的物理见解。给出的结果表明,所考虑的效应是由于中子-质子散射过程的超短但有限的时间窗口中开放量子系统的非单位时间演化(由于去相干性)引起的。指出了著名的量子芝诺效应,实验结果以及对第一原理的定性解释表明,超热中子散裂源处可利用的能量和提供大动量传递的电子光谱仪可能是研究迄今未知的物理和化学阿秒现象的新颖工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号