...
首页> 外文期刊>Nutrient Cycling in Agroecosystems >Legume, cropping intensity, and N-fertilization effects on soil attributes and processes from an eight-year-old semiarid wheat system
【24h】

Legume, cropping intensity, and N-fertilization effects on soil attributes and processes from an eight-year-old semiarid wheat system

机译:八年生半干旱小麦系统的豆类,耕作强度和氮肥对土壤属性和过程的影响

获取原文
获取原文并翻译 | 示例

摘要

In the North American northern Great Plains (NGP), legumes are promising summer fallow replacement/cropping intensification options that may decrease dependence on nitrogen (N) fertilizer in small grain systems and mitigate effects of soil organic matter (SOM) losses from summer fallow. Benefits may not be realized immediately in semiarid conditions though, and longer-term effects of legumes and intensified cropping in this region are unclear, particularly in no-till systems. We compared effects of four no-till wheat (Triticum aestivum L.) cropping systems-summer fallow-wheat (F-W), continuous wheat (CW), legume green manure (pea, Pisum sativum L.)-wheat (LGM-W), and pea-wheat (P-W)-on select soil attributes in an 8-year-old rotation study, and N fertilizer effects on C and N mineralization on a duplicate soil set in a laboratory experiment. We analyzed potentially mineralizable carbon and nitrogen (PMC and PMN) and mineralization trends with a nonlinear model, microbial biomass carbon (MB-C), and wet aggregate stability (WAS). Legume-containing systems generally resulted in higher PMC, PMN, and MB-C, while intensified systems (CW and P-W) had higher WAS. Half-lives of PMC were shortest in intensified systems, and were longest in legume systems (LGM-W and P-W) for PMN. Nitrogen addition depressed C and N mineralization, particularly in CW, and generally shortened the half-life of mineralizable C. Legumes may increase long-term, no-till NGP agroecosystem resilience and sustainability by (1) increasing the available N-supply (similar to 26-50 %) compared to wheat-only systems, thereby reducing the need for N fertilizer for subsequent crops, and (2) by potentially mitigating negative effects of SOM loss from summer fallow.
机译:在北美北部大平原(NGP),豆科植物有望替代夏季/种植强化作物,这可能会减少小谷物系统对氮(N)肥料的依赖并减轻夏季休耕对土壤有机质(SOM)损失的影响。但是,在半干旱条件下可能无法立即实现收益,而且该地区豆类和集约化作物的长期影响尚不清楚,尤其是在免耕系统中。我们比较了四种免耕小麦(Triticum aestivum L.)种植系统的效果-夏季休闲小麦(FW),连续小麦(CW),豆科绿肥(豌豆,Pisum sativum L。)-小麦(LGM-W) ,以及一项长达8年的轮作研究中的豌豆-小麦(PW)-选择土壤属性,在实验室实验中,在重复的土壤中,氮肥对土壤中碳和氮矿化的影响。我们使用非线性模型,微生物生物量碳(MB-C)和湿骨料稳定性(WAS)分析了潜在可矿化的碳和氮(PMC和PMN)和矿化趋势。含豆类的系统通常导致较高的PMC,PMN和MB-C,而增强型系统(CW和P-W)具有较高的WAS。 PMC的半衰期在强化系统中最短,而在豆类系统(LGM-W和P-W)中最长。氮的添加降低了碳和氮的矿化作用,特别是在连续水中,并通常缩短了可矿化碳的半衰期。豆类可能通过以下方式增加长期免耕NGP农业生态系统的适应力和可持续性:(1)增加可用的氮供应(类似与仅使用小麦的系统相比,降低了26-50%),从而减少了后续作物对氮肥的需求;(2)潜在地减轻了夏季休耕带来的SOM损失的负面影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号