...
首页> 外文期刊>Learning & memory >The neural circuit for tone-specific plasticity in the auditory system elicited by conditioning
【24h】

The neural circuit for tone-specific plasticity in the auditory system elicited by conditioning

机译:通过调节引起听觉系统中特定音质可塑性的神经回路

获取原文
获取原文并翻译 | 示例
           

摘要

Auditory fear conditioning elicits plastic changes specific to a conditioning tonal stimulus (CS) in the central auditory system. Gao and Suga (1998) proposed the neural circuit for producing these tone-specific changes, represented by best frequency (BF) shifts. The Gao–Suga model (Fig. 1, solid arrows), elaborated upon by Suga et al. (2000, 2002), states that small (or subthreshold) short-term cortical and collicular BF shifts specific to tone bursts (CS) are evoked by the neural circuit within the auditory cortex (Chowdhury and Suga 2000; Sakai and Suga 2001, 2002; Xiao and Suga 2002; Yan and Ehret 2002; Ma and Suga 2003, 2004) and corticofugal feedback loops (Gao and Suga 1998, 2000) activated by CS alone, and this cortical BF shift is augmented and changed into the long-term BF shift by acetylcholine released into the auditory cortex from the cholinergic basal forebrain, the nucleus basalis (Bakin and Weinberger 1996; Bjordahl et al. 1998; Kilgard and Merzenich 1998; Ma and Suga 2003; Yan and Zhang 2005; Zhang et al. 2005). In this model, the nucleus basalis is activated by the auditory and somatosensory cortices (Gao and Suga 1998, 2000; Ma and Suga 2001, 2003; Ji and Suga 2007b) via the association cortex and amygdala where CS is associated with an unconditioned leg stimulus (US). In addition, CS–US association may also occur in the association cortex. The collicular BF shift is increased by the augmented cortical BF shift through corticofugal feedback and contributes to the development of the large long-term cortical BF shift (Ji et al. 2001; Ma and Suga 2005). The ascending and descending (corticofugal) systems form positive feedback loops for the BF shifts. The gain of these feedback loops is presumably controlled by the thalamic reticular nucleus. (For simplicity, the corticothalamic projection is not described in the Gao–Suga model.) This model is fundamentally different from the Weinberger model (Weinberger 1998, 2007). It proposes that the small, short-lasting cortical BF shift is evoked by the neural net intrinsic to the central auditory system without CS–US association, whereas the Weinberger model proposes that it is evoked by the multisensory thalamic nuclei (the medial division of the medial geniculate body [MGBm] and the posterior interlaminar nucleus [PIN]) only after CS–US association occurs in these nuclei. Many neurophysiological findings indicate that the cortical and collicular BF shifts are evoked without CS–US association in the MGBm and PIN (Bakin and Weinberger 1996; Bjordahl et al. 1998; Kilgard and Merzenich 1998; Chowdhury and Suga 2000; Ma and Suga 2001, 2003, 2005; Sakai and Suga 2001, 2002; Xiao and Suga 2002; Yan and Ehret 2002; Yan and Zhang 2005; Zhang and Suga 2005; Zhang et al. 2005; Wu and Yan 2007) and that the inferior colliculus shows conditioningelicited BF shifts (Gao and Suga 1998, 2000; Ji et al. 2001, 2005; Ji and Suga 2003, 2007b). The Gao–Suga model is based on recent neurophysiological findings (Suga and Ma 2003), whereas the Weinberger model (Weinberger 2007, Fig. 12) does not incorporate any of these findings. Therefore, it is incorrect or incomplete. Suga does not doubt that MGBm neurons show responses to both CS
机译:听觉恐惧调节会引起中央听觉系统中特定于调节音调刺激(CS)的塑性变化。 Gao和Suga(1998)提出了用于产生这些特定音调变化的神经电路,用最佳频率(BF)位移表示。由Suga等人阐述的高苏加模型(图1,实线箭头)。 (2000年,2002年)指出,听觉皮层内的神经回路诱发了特定于声调爆发(CS)的短期(或阈值以下)短期皮质和结肠BF移位(Chowdhury和Suga 2000; Sakai和Suga 2001,2002)。 ; Xiao和Suga 2002; Yan和Ehret 2002; Ma和Suga 2003,2004)和仅由CS激活的皮质耳反馈回路(Gao和Suga 1998,2000),这种皮质BF移位增加并转变为长期BF。乙酰胆碱从胆碱能的基础前脑,基底核释放到听觉皮层中的转移(Bakin和Weinberger 1996; Bjordahl等1998; Kilgard和Merzenich 1998; Ma和Suga 2003; Yan和Zhang 2005; Zhang等2005) 。在该模型中,基础皮层核通过听觉和体感皮层激活(Gao和Suga 1998,2000; Ma和Suga 2001,2003; Ji和Suga 2007b),通过皮层和杏仁核的关联被激活,其中CS与无条件的腿部刺激相关(我们)。此外,CS-US关联也可能发生在关联皮层中。皮质BF的变化通过皮质小管的反馈而增加,从而导致了BF的BF移位,并促进了大范围的长期皮质BF移位的发展(Ji等,2001; Ma和Suga 2005)。上升和下降(皮质茎生)系统为BF移位形成正反馈回路。这些反馈回路的增益大概由丘脑网状核控制。 (为简单起见,在高-苏加模型中未描述皮质丘脑投射。)该模型与温伯格模型(Weinberger 1998,2007)有根本的不同。它提出小而持续的皮质BF移位是由中央听觉系统固有的神经网络引起的,而没有CS-US关联,而Weinberger模型提出了它是由多感觉丘脑核引起的(大脑皮层的中间分裂)引起的。仅在这些核中发生CS–US关联后,内侧膝状肌体[MGBm]和板层后核[P​​IN])。许多神经生理学发现表明,在MGBm和PIN中诱发了皮质和结肠BF移位,而没有CS-US关联(Bakin和Weinberger 1996; Bjordahl等1998; Kilgard和Merzenich 1998; Chowdhury和Suga 2000; Ma和Suga 2001, 2003,2005; Sakai and Suga 2001,2002; Xiao and Suga 2002; Yan and Ehret 2002; Yan and Zhang 2005; Zhang and Suga 2005; Zhang et al.2005; Wu and Yan 2007),并且下丘丘显示出条件性BF转变(Gao和Suga 1998,2000; Ji等2001,2005; Ji和Suga 2003,2007b)。 Gao-Suga模型基于最近的神经生理学发现(Suga和Ma 2003),而Weinberger模型(Weinberger 2007,图12)没有包含任何这些发现。因此,它是不正确或不完整的。 Suga毫不怀疑MGBm神经元对两种CS都有反应

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号