首页> 外文期刊>microsystems & nanoengineering >Outperforming piezoelectric ultrasonics with high-reliability single-membrane CMUT array elements
【24h】

Outperforming piezoelectric ultrasonics with high-reliability single-membrane CMUT array elements

机译:采用高可靠性单膜 CMUT 阵列元件的压电超声波性能优异

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

It has long been hypothesized that capacitive micromachined ultrasound transducers (CMUTs) could potentially outperform piezoelectric technologies. However, challenges with dielectric charging, operational hysteresis, and transmit sensitivity have stood as obstacles to these performance outcomes. In this paper, we introduce key architectural features to enable high-reliability CMUTs with enhanced performance. Typically, a CMUT element in an array is designed with an ensemble of smaller membranes oscillating together to transmit or detect ultrasound waves. However, this approach can lead to unreliable behavior and suboptimal transmit performance if these smaller membranes oscillate out of phase or collapse at different voltages. In this work, we designed CMUT array elements composed of a single long rectangular membrane, with the aim of improving the output pressure and electromechanical efficiency. We compare the performance of three different modifications of this architecture: traditional contiguous dielectric, isolated isolation post (IIP), and insulated electrode-post (EP) CMUTs. EPs were designed to improve performance while also imparting robustness to charging and minimization of hysteresis. To fabricate these devices, a wafer-bonding process was developed with near-100 bonding yield. EP CMUT elements achieved electromechanical efficiency values as high as 0.95, higher than values reported with either piezoelectric transducers or previous CM UT architectures. Moreover, all investigated CM UT architectures exhibited transmit efficiency 2-3 times greater than published CMUT or piezoelectric transducer elements in the 1.5-2.0 MHz range. The EP and IIP CMUTs demonstrated considerable charging robustness, demonstrating minimal charging over 500,000 collapse-snap-back actuation cycles while also mitigating hysteresis. Our proposed approach offers significant promise for future ultrasonic applications.
机译:长期以来,人们一直认为电容式微机械超声换能器(CMUT)可能优于压电技术。然而,介电充电、工作滞后和发射灵敏度方面的挑战一直是这些性能成果的障碍。在本文中,我们介绍了关键的架构特征,以实现具有增强性能的高可靠性CMUT。通常,阵列中的CMUT元件设计为一组较小的膜,这些膜一起振荡以传输或检测超声波。然而,如果这些较小的膜在不同电压下异相振荡或坍塌,这种方法可能会导致不可靠的行为和次优的传输性能。在这项工作中,我们设计了由单个长矩形膜组成的CMUT阵列元件,旨在提高输出压力和机电效率。我们比较了该架构的三种不同修改的性能:传统的连续电介质、隔离隔离柱 (IIP) 和绝缘电极柱 (EP) CMUT。EP 旨在提高性能,同时赋予充电鲁棒性和最小化迟滞。为了制造这些器件,开发了一种晶圆键合工艺,其键合良率接近 100%。EP CMUT元件的机电效率值高达0.95,高于压电传感器或以前的CM UT架构所报告的值。此外,在1.5-2.0 MHz范围内,所有研究的CM UT架构的发射效率都比已发表的CMUT或压电换能器元件高2-3倍。EP 和 IIP CMUT 表现出相当高的充电鲁棒性,在 500,000 次坍塌-回弹-回击驱动周期内表现出最小的充电,同时还减轻了滞后。我们提出的方法为未来的超声波应用提供了巨大的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号