...
首页> 外文期刊>Laser physics letters >Analysis of the effect of the fluid-structure interface on elastic wave velocity in cornea-like structures by OCE and FEM
【24h】

Analysis of the effect of the fluid-structure interface on elastic wave velocity in cornea-like structures by OCE and FEM

机译:用OCE和FEM分析流固界面对角膜状结构弹性波速度的影响

获取原文
获取原文并翻译 | 示例

摘要

Air-pulse optical coherence elastography (OCE) is a promising technique for quantifying biomechanical properties of the cornea. This technique typically involves imaging and analysis of the propagation of the air-pulse induced elastic waves to reconstruct corneal biomechanical properties using an analytical model. However, the effect of the fluid-structure interface (FSI) at the corneal posterior surface on the elastic wave velocity is not accounted for in many models. In this study, we examined the effect of the FSI with OCE experiments on contact lenses with and without fluid in the posterior gap. Finite element models (FEM), also with and without the FSI, were constructed to simulate the elastic wave propagation based on the OCE measurements. The FEM and OCE results were in good agreement demonstrating the feasibility of the method. To further investigate the effect of the FSI, OCE experiments and subsequent FEM simulations were conducted on in situ rabbit corneas before and after rose bengal/green light corneal collagen cross-linking (RGX). Both the OCE experiments and the FE simulations demonstrated that the FSI significantly reduced the group velocity of the elastic wave, and thus, should be considered when determining corneal biomechanical properties from an appropriate mechanical model. By matching the FEM-calculated velocity to the OCE-measured velocity, the corneal elasticity was quantified. The Young's modulus of the rabbit cornea before RGX was E = 65 +/- 10 kPa at a controlled intraocular pressure (IOP) of 15 mmHg. After RGX, the Young's modulus increased to E = 102 +/- 7 kPa at the same IOP.
机译:空气脉冲光学相干弹性成像(OCE)是用于量化角膜生物力学特性的一种有前途的技术。该技术通常涉及使用分析模型对空气脉冲诱发的弹性波的传播进行成像和分析,以重建角膜的生物力学特性。但是,在许多模型中并未考虑到角膜后表面的流体结构界面(FSI)对弹性波速度的影响。在这项研究中,我们检查了OCE实验对FSI对后间隙中是否有液体的隐形眼镜的影响。构造了有限元模型(FEM),也可以使用FSI和不使用FSI,以基于OCE测量来模拟弹性波传播。有限元分析和OCE结果吻合良好,证明了该方法的可行性。为了进一步研究FSI的影响,在玫瑰孟加拉/绿光角膜胶原交联之前(RGX)前后,对原位兔角膜进行了OCE实验和随后的FEM模拟。 OCE实验和FE模拟都表明FSI显着降低了弹性波的群速度,因此,在从适当的力学模型确定角膜的生物力学特性时应考虑该因素。通过将FEM计算的速度与OCE测量的速度相匹配,可以量化角膜弹性。在15 mmHg的受控眼压(IOP)下,RGX之前兔角膜的杨氏模量为E = 65 +/- 10 kPa。在RGX之后,在相同的IOP下,杨氏模量增加到E = 102 +/- 7 kPa。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号