...
首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Micromechanical testing of interfacial protein networks demonstrates ensemble behavior characteristic of a nanostructured biomaterial
【24h】

Micromechanical testing of interfacial protein networks demonstrates ensemble behavior characteristic of a nanostructured biomaterial

机译:界面蛋白网络的微机械测试证明了纳米结构生物材料的整体行为特征

获取原文
获取原文并翻译 | 示例

摘要

We develop and use novel instrumentation, the Cambridge Interfacial Tensiometer (CIT), to characterize the micromechanical response of a beta-lactoglobulin network adsorbed at the air-water interface. The technique is an interfacial two-dimensional analogy of conventional materials testing methodology but is conducted with high spatial resolution and requires the measurement of micro-Newton forces. Here we characterize interfacially adsorbed networks using an elasticity modulus (Et) derived from the gradient of the stress-strain plot at low strain. Measured Et values were of order 200 mN/m at the air-water interface, consistent with a calculated ensemble average estimated using atomic force microscopy derived data on the unfolding of individual protein molecules, Hydrophobic intermolecular interactions were identified as a possible dominant mechanism by which networks transmit force laterally in the interfacial plane. Covalent disulfide linkages did not significantly contribute to network rigidity in these tests, as the addition of the reducing agent dithiothreitol did not affect force transmission. Networks demonstrated a clear ability for "repair" that is dependent on bulk protein concentration and hence the rate of transport into the interfacial region during tensile testing. Importantly, this study suggests that network mechanical response is determined by residual protein tertiary structure and that adsorbed networks should therefore be analyzed as nanostructured biomaterials. The CIT technique complements existing surface rheology approaches for the characterization of interfacial protein networks and advantageously does not require a priori assumptions about network properties and behavior. [References: 42]
机译:我们开发并使用新型仪器,剑桥界面张力计(CIT),以表征吸附在空气-水界面的β-乳球蛋白网络的微机械响应。该技术是常规材料测试方法的界面二维模拟,但是以高空间分辨率进行并且需要测量微牛顿力。在这里,我们使用弹性模量(Et)来表征界面吸附网络,该弹性模量是从低应变应力-应变图的梯度得出的。在空气-水界面处测得的Et值约为200 mN / m,这与使用原子力显微镜得出的有关单个蛋白质分子未折叠数据的估计集合平均数一致,疏水性分子间相互作用被认为是一种可能的主导机制,网络在界面平面内横向传递力。在这些测试中,共价二硫键对网络的刚性没有显着贡献,因为添加还原剂二硫苏糖醇不会影响力的传递。网络显示出明显的“修复”能力,该能力取决于大量蛋白质的浓度,并因此取决于在拉伸测试过程中进入界面区域的传输速率。重要的是,这项研究表明网络的机械反应是由残留的蛋白质三级结构决定的,因此吸附的网络应作为纳米结构的生物材料进行分析。 CIT技术补充了现有的表面流变学方法来表征界面蛋白网络,并且有利地不需要关于网络特性和行为的先验假设。 [参考:42]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号