首页> 外文期刊>Lab on a chip >Lab-on-a-chip devices as an emerging platform for stem cell biology
【24h】

Lab-on-a-chip devices as an emerging platform for stem cell biology

机译:芯片实验室设备作为干细胞生物学的新兴平台

获取原文
获取原文并翻译 | 示例
           

摘要

The advent of stem cell based therapies has brought regenerative medicine into an increased focus as a part of the modern medicine practice, with a potential to treat a myriad of intractable diseases in the future. Stem cells reside in a complex microenvironment presenting them with a multitude of potential cues that are chemical, physical, and mechanical in nature. Conventional techniques used for experiments involving stem cells can only poorly mimic the physiological context, and suffer from imprecise spatial and temporal control, low throughput, lack of scalability and reproducibility, and poor representation of the mechanical and physical cell microenvironment. Novel lab-on-a-chip platforms, on the other hand, can much better mimic the complexity of in vivo tissue milieu and provide a greater control of the parameter variation in a high throughput and scalable manner. This capability may be especially important for understanding the biology and cementing the clinical potential of stem cell based therapies. Here we review microfabrication- and microfluidics-based approaches to investigating the complex biology of stem cell responses to changes in the local microenvironment. In particular, we categorize each method based on the types of controlled inputs it can have on stem cells, including soluble biochemical factors, extracellular matrix interactions, homotypic and heterotypic cell-cell signaling, physical cues (e.g. oxygen tension, pH, temperature), and mechanical forces (e.g. shear, topography, rigidity). Finally, we outline the methods to perform large scale observations of stem cell phenotypes and high-throughput screening of cellular responses to a combination of stimuli, and many new emerging technologies that are becoming available specifically for stem cell applications.
机译:基于干细胞疗法的出现使再生医学作为现代医学实践的一部分越来越受到关注,并且有可能在未来治疗多种难治性疾病。干细胞存在于复杂的微环境中,向它们提供了许多潜在线索,这些线索本质上是化学,物理和机械的。用于涉及干细胞的实验的常规技术只能较差地模仿生理环境,并且遭受不精确的空间和时间控制,低通量,缺乏可扩展性和可再现性,以及机械和物理细胞微环境的代表性差。另一方面,新型的芯片实验室平台可以更好地模拟体内组织环境的复杂性,并以高通量和可扩展的方式更好地控制参数变化。该功能对于理解生物学和巩固基于干细胞疗法的临床潜力尤其重要。在这里,我们回顾了基于微制造和微流体的方法,以研究干细胞对局部微环境变化的反应的复杂生物学。特别是,我们根据每种方法对干细胞可控制输入的类型进行分类,包括可溶性生化因子,细胞外基质相互作用,同型和异型细胞间信号传导,物理提示(例如,氧气张力,pH,温度),和机械力(例如,剪切力,形貌,刚度)。最后,我们概述了执行干细胞表型的大规模观察和对组合刺激的细胞反应进行高通量筛选的方法,以及许多专门用于干细胞应用的新兴技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号