首页> 外文期刊>Lab on a chip >A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning
【24h】

A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning

机译:一种微流控设备,使用光镊对单个细胞周围的环境进行可逆的改变,以进行细胞选择和定位

获取原文
获取原文并翻译 | 示例
           

摘要

Cells naturally exist in a dynamic chemical environment, and therefore it is necessary to study cell behaviour under dynamic stimulation conditions in order to understand the signalling transduction pathways regulating the cellular response. However, until recently, experiments looking at the cellular response to chemical stimuli have mainly been performed by adding a stress substance to a population of cells and thus only varying the magnitude of the stress. In this paper we demonstrate an experimental method enabling acquisition of data on the behaviour of single cells upon reversible environmental perturbations, where microfluidics is combined with optical tweezers and fluorescence microscopy. The cells are individually selected and positioned in the measurement region on the bottom surface of the microfluidic device using optical tweezers. The optical tweezers thus enable precise control of the cell density as well as the total number of cells within the measurement region. Consequently, the number of cells in each experiment can be optimized while clusters of cells, that render subsequent image analysis more difficult, can be avoided. The microfluidic device is modelled and demonstrated to enable reliable changes between two different media in less than 2 s. The experimental method is tested by following the cycling of GFP-tagged proteins (Mig1 and Msn2, respectively) between the cytosol and the nucleus in Saccharomyces cerevisiae upon changes in glucose availability.
机译:细胞自然存在于动态化学环境中,因此有必要研究动态刺激条件下的细胞行为,以了解调节细胞应答的信号转导途径。然而,直到最近,主要通过向细胞群中添加应激物质并因此仅改变应激的量来进行关于细胞对化学刺激的反应的实验。在本文中,我们演示了一种实验方法,该方法能够在可逆环境扰动下获取有关单细胞行为的数据,其中微流体与光学镊子和荧光显微镜相结合。使用光学镊子分别选择细胞并将其放置在微流体装置底表面的测量区域中。因此,光镊能够精确控制细胞密度以及测量区域内的细胞总数。因此,可以优化每个实验中的细胞数量,同时可以避免使后续图像分析更加困难的细胞簇。对微流体装置进行了建模并证明可以在不到2秒的时间内在两种不同的介质之间进行可靠的更换。实验方法是通过跟踪GFP标记的蛋白(分别为Mig1和Msn2)在酿酒酵母中胞浆和细胞核之间循环后的葡萄糖可利用性来测试的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号