...
首页> 外文期刊>Lab on a chip >Caulking polydimethylsiloxane molecular networks by thermal chemical vapor deposition of Parylene-C
【24h】

Caulking polydimethylsiloxane molecular networks by thermal chemical vapor deposition of Parylene-C

机译:通过聚对二甲苯-C的热化学气相沉积来填缝聚二甲基硅氧烷分子网络

获取原文
获取原文并翻译 | 示例
           

摘要

Surface functionalization of polydimethylsiloxane (PDMS) is important in developing high-performance microfluidic devices. This work applied the thermal chemical vapor deposition (t-CVD) of Parylene-C onto PDMS to caulk the molecular network while retaining the original surface properties for the oxygen plasma bonding. The very low deposition rates (for example, a nominal rate of 0.12 angstrom min(-1) at 135 degrees C) of Parylene-C at elevated substrate temperatures enabled the reactive Parylene-C monomers to penetrate into the PDMS matrix up to 4.6 +/- 0.1 mu m (135 degrees C), which was verified for the first time by a scanning electron microscope with an energy dispersive X-ray analysis (SEM-EDAX). The Parylene-C caulked in the molecular network of PDMS matrix guaranteed an excellent resistance to small molecule permeations. Meanwhile, only discrete nucleation islands were formed on the top surface rather than a continuous Parylene-C layer as observed under the AFM scan, which made the processed PDMS surface ready for device assembly. This surface functionalization method has better long-term stability than the other wet-type rivals. The barrier for oxygen plasma bonding in previously reported dry surface treatments was also avoided, thereby, facilitating the device assembly. The present work successfully developed a novel pcPDMS (Parylene-C caulked PDMS) technique, which overcame the bonding difficulty in the previous works but retained the low small molecule permeability as before. Caulking a molecular network through the t-CVD of Parylene-C also demonstrated a new strategy of functionalizing polymer surfaces and preparing new hybrid materials for wide lab-on-a-chip applications.
机译:聚二甲基硅氧烷(PDMS)的表面功能化对于开发高性能微流控设备非常重要。这项工作将聚对二甲苯-C的热化学气相沉积(t-CVD)应用于PDMS,以填塞分子网络,同时保留用于氧等离子体键合的原始表面特性。在升高的基材温度下,Parylene-C的沉积速率非常低(例如,在135摄氏度下的标称速率为0.12埃斯敏·分钟(-1)在135°C),使反应性Parylene-C单体能够渗透到PDMS基质中,最高可达4.6 + 0.1μm(135℃),这是通过具有能量色散X射线分析(SEM-EDAX)的扫描电子显微镜首次验证的。 PDMS基质的分子网络中聚结的Parylene-C保证了对小分子渗透的出色抵抗力。同时,在顶表面上仅形成离散的成核岛,而不是在AFM扫描下观察到连续的Parylene-C层,这使处理后的PDMS表面准备好进行器件组装。这种表面功能化方法具有比其他湿式竞争对手更好的长期稳定性。还避免了先前报道的干表面处理中氧等离子体键合的障碍,从而简化了设备组装。目前的工作成功地开发了一种新颖的pcPDMS(聚对二甲苯C嵌塞式PDMS)技术,该技术克服了先前工作中的键合困难,但仍保留了以前的低小分子渗透性。通过Parylene-C的t-CVD形成分子网络的缝隙还展示了一种新的策略,可以使聚合物表面功能化并为广泛的芯片实验室应用准备新的混合材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号