【24h】

Magnetic damping of g-jitter induced double-diffusive convection

机译:g抖动引起的双扩散对流的磁阻尼

获取原文
获取原文并翻译 | 示例
       

摘要

This article describes a numerical study of g-jitter driven double-diffusive convective flows and thermal and concentration distributions in binary alloy melt systems subject to an external magnetic field. The study is based on the finite element solution of transient magnetohydrodynamic equations governing the momentum, thermal, and solutal transport in the melt pool. Numerical simulations are conducted using synthesized single- and multi-frequency g-jitter as well as real g-jitter data taken during space flights with or without an applied magnetic field. It is found that for the conditions studied, the main melt flow follows approximately a linear superposition of velocity components induced by individual g-jitter components, regardless of whether a magnetic field exists or not. The flow If, field is characterized by a recirculating double-diffusive convection loop oscillating in time with a defined frequency equal to that of the driving g-jitter force. An applied magnetic field has little effect on the oscillating recirculating pattern, except around the moment when the flow reverses its direction. The field has no effect on the oscillation period, but it changes the phase angle. It is very effective in suppressing the flow intensity, and produces a notable reduction of solute striations and time fluctuations in the melt. For a given magnetic field strength, the magnetic damping effect is more pronounced on the velocity associated with the largest g-jitter component present and/or the g-jitter spiking peaks. A stronger magnetic field is more effective in suppressing the melt convection and also is more helpful in bringing the convection in phase with the g-jitter driving force. The applied field is particularly useful in suppressing the effect of real g-jitter spikes on both flow and solutal distributions. With appropriately selected magnetic fields, the convective flows caused by g-jitter can be reduced sufficiently, and it is possible that diffusion dominates the solutal transport in the melt. [References: 16]
机译:本文描述了受外部磁场作用的二元合​​金熔体系统中g抖动驱动的双扩散对流和热和浓度分布的数值研究。该研究基于控制熔池中动量,热和溶质运移的瞬变磁流体动力学方程式的有限元解。使用合成的单频和多频g抖动以及在有或没有施加磁场的空间飞行中获取的实际g抖动数据进行了数值模拟。发现在所研究的条件下,不管是否存在磁场,主熔体流动大致遵循由各个g抖动分量引起的速度分量的线性叠加。流体If 1场的特征在于,以限定的频率等于驱动g抖动力的频率及时振荡的循环双扩散对流环路。施加的磁场对振荡的循环模式几乎没有影响,除了在气流反转其方向的瞬间附近。磁场对振荡周期没有影响,但是会改变相位角。它在抑制流动强度方面非常有效,并显着降低了熔体中的溶质条纹和时间波动。对于给定的磁场强度,在与存在的最大g抖动分量和/或g抖动尖峰相关的速度上,磁阻尼效应更加明显。较强的磁场在抑制熔体对流方面更有效,并且也有助于使对流与g抖动驱动力同相。在抑制实际g抖动尖峰对流量和溶液分布的影响时,施加的磁场特别有用。通过适当选择磁场,可以充分降低由g抖动引起的对流,并且扩散可能主导熔体中的溶质运移。 [参考:16]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号