首页> 外文期刊>Numerical Heat Transfer, Part A. Application: An International Journal of Computation and Methodology >Heat Transfer Enhancement of Backward-Facing Step Flow by Using Nano-Encapsulated Phase Change Material Slurry
【24h】

Heat Transfer Enhancement of Backward-Facing Step Flow by Using Nano-Encapsulated Phase Change Material Slurry

机译:纳米封装相变材料浆料增强逆向步进流动的传热

获取原文
获取原文并翻译 | 示例
           

摘要

Laminar forced convection of nano-encapsulated phase change material (NEPCM) slurry over a 2D horizontal backward-facing step is numerically investigated using a finite volume method based on a collocated grid. The slurry consists of water as base fluid and n-octadecane NEPCM particles with an average diameter of 100nm. Uniform heat flux boundary condition is imposed to the downstream wall while the step and upstream walls are subjected to adiabatic boundary condition. The effects of Reynolds number ranging from 20 to 80, volume fractions of nanoparticles ranging from 0% to 30%, as well as heat flux ranging from 500 to 2,500W/m(2) are studied. In order to understand the physics of flow and heat transfer of slurry over the backward-facing step, the streamlines and isotherms of the flow were studied. An enhancement in heat transfer coefficient up to 67% using slurry as working fluid compared with pure water can be observed. However, because of the higher viscosity of mixture compared with pure water, the slurry can cause a higher pressure drop in the system. Furthermore, as wall heat flux and Reynolds number increase, the heat transfer coefficient of the bottom wall increases until a critical heat flux is reached and heat transfer performance becomes independent of heat flux.
机译:使用基于并置网格的有限体积方法,对二维水平朝后步骤中纳米封装相变材料(NEPCM)浆料的层流强制对流进行了数值研究。浆液由作为基础流体的水和平均直径为100nm的正十八烷NEPCM颗粒组成。均匀的热通量边界条件被施加到下游壁,而台阶和上游壁则经受绝热边界条件。研究了雷诺数从20到80,纳米粒子的体积分数从0%到30%以及热通量从500到2500W / m(2)的影响。为了了解浆液在向后流动过程中的流动和传热的物理原理,研究了流动的流线和等温线。与纯水相比,使用浆液作为工作流体,可以观察到传热系数提高多达67%。但是,由于与纯水相比,混合物的粘度更高,因此浆料可能会导致系统中的压降更高。此外,随着壁热通量和雷诺数的增加,底壁的热传递系数增加,直到达到临界热通量,并且热传递性能变得与热通量无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号