首页> 外文期刊>Numerical Heat Transfer, Part A. Application: An International Journal of Computation and Methodology >NUMERICAL PREDICTION OF FLOW STRUCTURE AND HEAT TRANSFER IN SQUARE CHANNELS WITH DIMPLES COMBINED WITH SECONDARY HALF-SIZE DIMPLES/PROTRUSIONS
【24h】

NUMERICAL PREDICTION OF FLOW STRUCTURE AND HEAT TRANSFER IN SQUARE CHANNELS WITH DIMPLES COMBINED WITH SECONDARY HALF-SIZE DIMPLES/PROTRUSIONS

机译:带有二次半尺寸试管/突出物的试管方形通道内流动结构和传热的数值预测

获取原文
获取原文并翻译 | 示例
           

摘要

The present study employs square cross-section dimpled channels with different arrangements of upstream secondary half-size dimples or protrusions to determine the optimal configurations for augmenting heat transfer rates with minimized pressure drop penalties. Five dimpled channels with and without upstream secondary dimples or protrusions are investigated (simple dimpled channel [case A]; dimpled channels with secondary dimples upstream each dimple [cases B1 and B2, respectively]; and dimpled channels with secondary protrusions upstream each dimple [cases C1 and C2, respectively]). All turbulent fluid flow and surface heat transfer results are obtained using computation fluid dynamics with a k-ε RNG turbulence model. Numerical results are qualified using grid-independent predictions of experimental data for one baseline dimple array arrangement. The channel inlet Reynolds number ranges from 8,000 to 24,000. From this study, secondary protrusions can bring forward flow separations and reduce the scope of recirculating flows in adjacent primary dimples and then greatly improve averaged local heat transfer of primary dimple surface. The result does not apply to secondary dimples which hinder flow reattachment in primary dimples and go against heat transfer enhancement. For averaged heat transfer on all the middle heated surfaces, heat transfer enhancement by secondary protrusions is not evident especially at high Reynolds numbers and the uniformity of roughness arrangements as dimples and protrusions makes a dominant role in the averaged heat transfer efficiency, while the dimple structure exhibits heat transfer advantage over protrusions at high Reynolds numbers. For the studied cases, case C1 obtains the best overall thermal performance at low Reynolds numbers, while case B2 is the best one at high Reynolds numbers. It is also recommend that case A can be effectively designed to exhibit the relatively good overall thermal performance with minimizing the blade weight and stress.
机译:本研究采用具有不同布置的上游次要半凹坑或突起的方形横截面凹坑通道,以确定以最小的压降损失来提高传热速率的最佳配置。研究了五个带有和不带有上游次级凹痕或突起的凹坑通道(简单凹坑[案例A];每个凹坑上游具有次凹坑的凹坑(分别为案例B1和B2);以及每个凹坑上游有次级突起的凹坑[案例] C1和C2])。使用k-εRNG湍流模型通过计算流体动力学获得所有湍流流体流动和表面传热结果。使用一个基准酒窝阵列布置的实验数据的独立于网格的预测来验证数值结果。通道入口雷诺数范围为8,000至24,000。从这项研究中,次要的突起可以带来向前的流动分离,并减小相邻主凹坑中的再循环流的范围,然后大大改善主凹坑表面的平均局部传热。该结果不适用于阻碍初级凹坑中的流重新附着并不利于传热增强的次级凹坑。对于所有中间受热表面上的平均传热,次级突起的传热没有明显增强,尤其是在高雷诺数下,并且作为凹痕和突起的粗糙度排列的均匀性在平均传热效率中起主要作用,而凹痕结构与高雷诺数下的突起相比,具有更高的传热优势。对于所研究的情况,情况C1在低雷诺数下可获得最佳的整体热性能,而情况B2在较高的雷诺数下可获得最佳的整体热性能。还建议将外壳A有效地设计为在使叶片重量和应力最小化的情况下表现出相对较好的整体热性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号