首页> 外文期刊>Catalysis Today >Oxidative dehydrogenation of ethane to ethylene over alumina-supported vanadium oxide catalysts: Relationship between molecular structures and chemical reactivity
【24h】

Oxidative dehydrogenation of ethane to ethylene over alumina-supported vanadium oxide catalysts: Relationship between molecular structures and chemical reactivity

机译:氧化铝负载的钒氧化物催化剂上乙烷的氧化脱氢为乙烯:分子结构与化学反应性之间的关系

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The influence of vanadium oxide loading in the supported VO_x/Al_2O_3 catalyst system upon the dehydrated surface vanadia molecular structure,surface acidic properties,reduction characteristics and the catalytic oxidative dehydrogenation (ODH) of ethane to ethylene was investigated.Characterization of the supported VO_x/Al_2O_3 catalysts by XPS surface analysis and Raman spectroscopy revealed that vanadia was highly dispersed on the Al_2O_3 support as a two-dimensional surface VO_x overlayer with monolayer surface coverage corresponding to approx 9 Vm~2.Furthermore,Raman revealed that the extent of polymerization of surface VO_x species increases with surface vanadia coverage in the sub-monolayer region.Pyridine chemisorption-IR studies revealed that the number of surface Br0nsted acid sites increases with increasing surface VO_x coverage and parallels the extent of polymerization in the sub-monolayer region.The reducibility of the surface VO_x species was monitored by both H_2-TPR and in situ Raman spectroscopy and also revealed that the reducibility of the surface VO_x species increases with surface VO_x coverage and parallels the extent of polymerization in the sub-monolayer region.The fraction of monomeric and polymeric surface VO_x species has been quantitatively calculated by a novel UV-Vis DRS method.The overall ethane ODH TOF value,however,is constant with surface vanadia coverage in the sub-monolayer region.The constant ethane TOF reveals that both isolated and polymeric surface VO_x species possess essentially the same TOF value for ethane activation.The reducibility and Br0nsted acidity of the surface VO_x species,however,do affect the ethylene selectivity.The highest selectivity to ethylene was obtained at a surface vanadia density of approx 2.2 Vm~2,which corresponds to a little more than approx 0.25 monolayer coverage.Below 2.2 Vm ,exposed Al support cations are responsible for converting ethylene to CO.Above 2.2 Vm~2,the enhanced reducibility and surface Br0nsted acidity appear to decrease the ethylene selectivity,which may also be due to higher conversion levels.Above monolayer coverage,crystalline V_2O_5 nanoparticles are also present and do not contribute to ethane activation,but are responsible for unselective conversion of ethylene to CO.The crystalline V_2O_5 nanoparticles also react with the Al_2O_3 support at elevated temperatures via a solid-state reaction to form crystalline AlVO_4,which suppresses ethylene combustion of the crystalline V_2O_5 nanoparticles.The molecular structure-chemical characteristics of the surface VO_x species demonstrate that neither the terminal V=O nor bridging V-O-V bonds influence the chemical properties of the supported VO_x/Al_2O_3 catalysts,and that the bridging V-O-Al bond represents the catalytic active site for ethane activation.
机译:研究了负载型VO_x / Al_2O_3催化剂体系中钒氧化物的负载量对脱水表面钒分子结构,表面酸性,还原特性以及乙烷催化生成乙烯的氧化脱氢的影响。负载型VO_x / Al_2O_3的表征XPS表面分析和拉曼光谱研究表明,钒在Al_2O_3载体上以二维VO_x覆盖层的形式高度分散,单层表面覆盖率约为9 V / nm〜2。在亚单分子层区域中,表面VO_x种类随表面钒的覆盖率而增加。吡啶化学吸附-IR研究表明,随着表面VO_x分子覆盖率的增加,表面布朗斯台德酸位点的数量增加,并且与亚单分子层区域中的聚合程度平行。 H_2-TPRa监测表面VO_x种类在原位拉曼光谱中,还发现表面VO_x物种的可还原性随表面VO_x覆盖率的增加而增加,并与亚单层区域中的聚合程度相平行。 UV-Vis DRS方法。然而,乙烷ODH的总TOF值与亚单层区域中的表面钒覆盖率是恒定的。恒定的乙烷TOF表明,分离的和聚合的表面VO_x物种对于乙烷活化均具有基本相同的TOF值然而,表面VO_x物种的还原性和布朗斯台德酸度会影响乙烯的选择性。在表面钒浓度约为2.2 V / nm〜2时,对乙烯的选择性最高,相当于约0.25或更高。低于2.2 V / nm时,暴露的Al载体阳离子可将乙烯转化为CO。高于2.2 V / nm〜2时,还原性增强表面布朗斯台德酸度似乎降低了乙烯的选择性,这也可能是由于较高的转化率所致。在单分子层覆盖率之上,还存在结晶性的V_2O_5纳米颗粒,它们不会促进乙烷的活化,但会导致乙烯非选择性地转化为CO。晶体V_2O_5纳米粒子还通过固相反应在高温下与Al_2O_3载体反应形成晶体AlVO_4,从而抑制了晶体V_2O_5纳米粒子的乙烯燃烧。表面VO_x物种的分子结构-化学特征表明末端没有V = O也不桥接VOV键影响负载的VO_x / Al_2O_3催化剂的化学性质,桥接的VO-Al键代表乙烷活化的催化活性位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号