首页> 外文期刊>Nucleic Acids Research >Excision repair of nitrogen mustard-DNA adducts in Saccharomyces cerevisiae.
【24h】

Excision repair of nitrogen mustard-DNA adducts in Saccharomyces cerevisiae.

机译:酿酒酵母中氮芥-DNA加合物的切除修复。

获取原文
获取原文并翻译 | 示例
           

摘要

The bifunctional alkylating anticancer drug nitrogen mustard forms a variety of DNA lesions, including monoadducts and intrastrand and interstrand crosslinks. Although it is known that nucleotide excision repair (NER) is important in processing these adducts, the role of the other principal excision repair pathway, base excision repair (BER) is less well defined. Using isogenic Saccharomyces cerevisiae strains disrupted for a variety of NER and BER genes we have examined the relative importance of the two pathways in the repair of nitrogen mustard adducts. As expected, NER defective cells (rad4 and rad14 strains) are extremely sensitive to the drug. One of the BER mutants, a 3-methyladenine glycosylase defective (mag1) strain also shows significant hypersensitivity. Using a rad4/mag1 double mutant it is shown that the two excision repair pathways are epistatic to each other for nitrogen mustard sensitivity. Furthermore, both rad14 and mag1 disruptants show elevated levels of nitrogen mustard-induced forward mutation. Measurements of repair rates of nitrogen mustard N-alkylpurine adducts in the highly transcribed RPB2 gene demonstrate defects in the processing of mono-adducts in rad4, rad14 and mag1 strains. However, there are differences in the kinetics of adduct removal in the NER mutants compared to the mag1 strain. In the mag1 strain significant repair occurs within 1 h with evidence of enhanced repair on the transcribed strand. Adducts however accumulate at later times in this strain. In contrast, in the NER mutants repair is only evident at times greater than 1 h. In a mag1/rad4 double mutant damage accumulates with no evidence of repair. Comparison of the rates of repair in this gene with those in a different genomic region indicate that the contributions of NER and BER to the repair of nitrogen mustard adducts may not be the same genome wide.
机译:双功能烷基化抗癌药物氮芥子气会形成多种DNA损伤,包括单加合物以及链内和链间交联。尽管已知核苷酸切除修复(NER)在加工这些加合物中很重要,但其他主要的切除修复途径,碱基切除修复(BER)的作用尚不清楚。使用被各种NER和BER基因破坏的同基因酿酒酵母菌株,我们研究了这两种途径在氮芥菜加合物修复中的相对重要性。正如预期的那样,NER缺陷细胞(rad4和rad14株)对这种药物极为敏感。 BER突变体之一的3-甲基腺嘌呤糖基化酶缺陷(mag1)菌株也显示出明显的超敏性。使用rad4 / mag1双突变体显示,对于氮芥子敏感性,两个切除修复途径彼此上位。此外,rad14和mag1破坏物均显示氮芥诱导的正向突变水平升高。测量高度转录的RPB2基因中芥菜N-烷基嘌呤氮加合物的修复率表明,rad4,rad14和mag1菌株中单加合物的加工存在缺陷。但是,与mag1菌株相比,NER突变体中加合物去除的动力学存在差异。在mag1菌株中,在1小时内发生了明显的修复,并证明了转录链上修复的增强。然而,加合物在该菌株中在以后的时间积累。相反,在NER突变体中,修复仅在大于1小时的时间才明显。在mag1 / rad4中,双突变突变体积累,没有修复迹象。该基因修复率与不同基因组区域修复率的比较表明,NER和BER对氮芥菜加合物修复的贡献可能不在全基因组范围内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号