首页> 外文学位 >Elucidating Mechanisms of Base Excision Repair and Genetic Instability in Saccharomyces cerevisiae.
【24h】

Elucidating Mechanisms of Base Excision Repair and Genetic Instability in Saccharomyces cerevisiae.

机译:酿酒酵母碱基切除修复和遗传不稳定性的阐明机制。

获取原文
获取原文并翻译 | 示例

摘要

A large subset of DNA damage acquired by cells is repaired by the base excision repair (BER) pathway. Though defects in many BER genes have been associated with neurodegenerative diseases and cancer, the molecular basis for such associations is not well understood. Further, when cells cannot repair oxidative DNA lesions normally targeted by BER, large-scale genome destabilization can occur. The major goals of the studies presented here are to better understand BER mechanisms at the level of individual proteins and on the genome-wide level. We employed Saccharomyces cerevisiae because the biochemical steps of BER are highly conserved, and S. cerevisiae is a well developed model for DNA repair studies. AP endonucleases play a central role in the repair of DNA damage through the BER pathway, thus our studies focus on the major yeast AP endonuclease, Apn1, to better understand how BER protects cells against genomic instability, an important characteristic of cancer.;In an unbiased, forward genetic screen to identify mutations in APN1 that impair cellular DNA repair capacity we identified and characterized variant Apn1 V156E, which was predicted to decrease catalytic function based on homology modeling. We found that, unlike wild type Apn1, the V156E is targeted for degradation by a proteasome-independent mechanism, leading to decreased steady-state levels. Inducing transcription of APN1-V156E using a regulatable promoter restored protein to levels comparable to wild type Apn1 and functionally restored DNA repair capacity. Thus, the V156 residue plays a critical role in maintaining Apn1 protein levels and normal levels of repair independent of catalytic function.;In genome-wide chromatin immunoprecipitation studies aimed at exploring the relationship between DNA damage repair and genomic instability using Apn1 as the target protein, we found that the level of oxidative stress dictates the distribution of Apn1 across the genome. Regardless of oxidative stress level, Apn1 binding sites are enriched for C and G nucleotides, suggesting that Apn1 targets particular regions in a base content-specific manner. These results have implications for understanding how the genomic distribution of DNA repair activities preserves genome integrity and for understanding how defects in the major human AP endonuclease may contribute to disease.
机译:细胞获得的大部分DNA损伤通过碱基切除修复(BER)途径修复。尽管许多BER基因的缺陷与神经退行性疾病和癌症有关,但这种联系的分子基础尚不十分清楚。此外,当细胞无法修复通常由BER靶向的氧化性DNA损伤时,可能会发生大规模的基因组不稳定。本文介绍的研究的主要目标是更好地了解单个蛋白质水平和全基因组水平的BER机制。我们使用酿酒酵母是因为BER的生化步骤高度保守,而酿酒酵母是DNA修复研究的完善模型。 AP核酸内切酶在通过BER途径修复DNA损伤中起着核心作用,因此我们的研究集中在主要的酵母AP核酸内切酶Apn1上,以更好地了解BER如何保护细胞免受基因组不稳定的影响,这是癌症的重要特征。我们进行了无偏见的正向遗传筛选,以鉴定会损害细胞DNA修复能力的APN1突变,我们确定并表征了Apn1 V156E变体,该变体根据同源性建模预测会降低催化功能。我们发现,与野生型Apn1不同,V156E的目标是通过不依赖蛋白酶体的机制降解,从而导致稳态水平降低。使用可调节的启动子诱导APN1-V156E的转录可将蛋白质恢复到与野生型Apn1相当的水平,并在功能上恢复了DNA修复能力。因此,V156残基在维持Apn1蛋白水平和正常修复水平而与催化功能无关的过程中起着至关重要的作用。在全基因组染色质免疫沉淀研究中,目的在于探索以Apn1为靶蛋白的DNA损伤修复与基因组不稳定性之间的关系。 ,我们发现氧化应激的水平决定了Apn1在整个基因组中的分布。无论氧化应激水平如何,Apn1结合位点的C和G核苷酸都富集,这表明Apn1以碱基含量特定的方式靶向特定区域。这些结果对于理解DNA修复活动的基因组分布如何保持基因组完整性以及理解主要人类AP核酸内切酶的缺陷如何导致疾病具有重要意义。

著录项

  • 作者

    Morris, Lydia Patrice.;

  • 作者单位

    Emory University.;

  • 授予单位 Emory University.;
  • 学科 Biology Molecular.;Biology Genetics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号