首页> 外文期刊>Nonlinear dynamics >Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations
【24h】

Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations

机译:绝对节点坐标微分/代数方程解的隐式和显式积分

获取原文
获取原文并翻译 | 示例
           

摘要

This investigation is concerned with the use of an implicit integration method with adjustable numerical damping properties in the simulation of flexible multibody systems. The flexible bodies in the system are modeled using the finite element absolute nodal coordinate formulation (ANCF), which can be used in the simulation of large deformations and rotations of flexible bodies. This formulation, when used with the general continuum mechanics theory, leads to displacement modes, such as Poisson modes, that couple the cross section deformations, and bending and extension of structural elements such as beams. While these modes can be significant in the case of large deformations, and they have no significant effect on the CPU time for very flexible bodies; in the case of thin and stiff structures, the ANCF coupled deformation modes can be associated with very high frequencies that can be a source of numerical problems when explicit integration methods are used. The implicit integration method used in this investigation is the Hilber-Hughes-Taylor method applied in the context of Index 3 differential-algebraic equations (HHT-I3). The results obtained using this integration method are compared with the results obtained using an explicit Adams-predictor-corrector method, which has no adjustable numerical damping. Numerical examples that include bodies with different degrees of flexibility are solved in order to examine the performance of the HHT-I3 implicit integration method when the finite element absolute nodal coordinate formulation is used. The results obtained in this study show that for very flexible structures there is no significant difference in accuracy and CPU time between the solutions obtained using the implicit and explicit integrators. As the stiffness increases, the effect of some ANCF coupled deformation modes becomes more significant, leading to a stiff system of equations. The resulting high frequencies are filtered out when the HHT-I3 integrator is used due to its numerical damping properties. The results of this study also show that the CPU time associated with the HHT-I3 integrator does not change significantly when the stiffness of the bodies increases, while in the case of the explicit Adams method the CPU time increases exponentially. The fundamental differences between the solution procedures used with the implicit and explicit integrations are also discussed in this paper.
机译:这项研究涉及在柔性多体系统的仿真中使用具有可调数值阻尼特性的隐式积分方法。使用有限元绝对节点坐标公式(ANCF)对系统中的柔性体进行建模,该公式可用于模拟柔性体的大变形和旋转。当与通用连续力学理论一起使用时,此公式会导致位移模式(例如泊松模式),其耦合横截面变形以及结构元素(例如梁)的弯曲和延伸。虽然这些模式在变形较大的情况下可能很重要,但是对于非常灵活的主体,它们对CPU时间没有明显影响;对于薄而刚性的结构,ANCF耦合变形模式可能与非常高的频率相关联,当使用显式积分方法时,这可能是数值问题的根源。本研究中使用的隐式积分方法是在索引3微分-代数方程式(HHT-1)中应用的Hilber-Hughes-Taylor方法。将使用此积分方法获得的结果与使用显式Adams-predictor-corrector方法获得的结果进行比较,该方法没有可调的数字阻尼。解决了包含不同柔性程度的物体的数值示例,以检查使用有限元绝对节点坐标公式表示时HHT-I3隐式积分方法的性能。在这项研究中获得的结果表明,对于非常灵活的结​​构,使用隐式和显式积分器获得的解决方案之间的准确性和CPU时间没有显着差异。随着刚度的增加,某些ANCF耦合变形模式的影响变得更加明显,从而导致方程的刚性系统。使用HHT-I3积分器时,由于其数值阻尼特性,所产生的高频会被滤除。这项研究的结果还表明,当车身刚度增加时,与HHT-I3积分器关联的CPU时间不会显着变化,而在显式Adams方法的情况下,CPU时间呈指数增长。本文还讨论了与隐式和显式积分一起使用的求解过程之间的根本区别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号