首页> 外文期刊>Catalysis Today >Microtomography-based numerical simulations of heat transfer and fluid flow through beta-SiC open-cell foams for catalysis
【24h】

Microtomography-based numerical simulations of heat transfer and fluid flow through beta-SiC open-cell foams for catalysis

机译:基于微观断层摄影术的热传递和流体通过β-SiC开孔泡沫催化的数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

beta-SiC open-cell foams are promising materials for catalytic supports with improved heat and mass transfer at moderate pressure drops. In this work, 3-dimensional (3D) models of a 30 ppi (pores per inch) beta-SiC open-cell foam were generated using X-ray microtomography data. The resulting foam models were then used for finite element analysis (FEA) and computational fluid dynamics (CFD) simulations of heat transfer and fluid flow on the pore-scale. The FEA results demonstrate that (i) the overall effective thermal conductivity from direct simulations is comparable to the results estimated by experimental measurement, and are in the order of 10(-1) W m(-1) K-1 and (ii) thermal transport through fluid-saturated beta-SiC foams depends on the solid-to-fluid conductivity ratio. By employing realistic foam models, pore-scale CFD simulations of fluid flows revealed the microscopic characteristics of laminar flow through open-cell foams. The anisotropic feature of realistic foam models promotes the axial and radial mixing of fluids in and after the foam element. The diffusion coefficient of laminar flow within foams was estimated at 10(-4) m(2) s(-1), which is much larger than the molecular diffusion coefficient in a typical laminar flow in an open channel. (C) 2016 Elsevier B.V. All rights reserved.
机译:β-SiC开孔泡沫材料是催化载体的有前途的材料,在适度的压降下具有改善的传热和传质性能。在这项工作中,使用X射线显微断层照相术数据生成了30 ppi(每英寸孔数)β-SiC开孔泡沫的3维(3D)模型。然后将所得的泡沫模型用于孔尺度上的热传递和流体流动的有限元分析(FEA)和计算流体动力学(CFD)模拟。 FEA结果表明,(i)直接模拟的总体有效热导率可与实验测量估计的结果相媲美,约为10(-1)W m(-1)K-1和(ii)通过流体饱和的β-SiC泡沫的热传输取决于固体与流体的电导率之比。通过采用逼真的泡沫模型,流体流动的孔尺度CFD模拟揭示了通过开孔泡沫的层流的微观特征。逼真的泡沫模型的各向异性特征促进了泡沫元件内部和之后的流体的轴向和径向混合。泡沫中层流的扩散系数估计为10(-4)m(2)s(-1),这比明渠中典型层流的分子扩散系数大得多。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号