...
首页> 外文期刊>Neuroscience: An International Journal under the Editorial Direction of IBRO >The role of chloride-dependent inhibition and the activity of fast-spiking neurons during cortical spike-wave electrographic seizures.
【24h】

The role of chloride-dependent inhibition and the activity of fast-spiking neurons during cortical spike-wave electrographic seizures.

机译:氯化物依赖性抑制作用和皮层尖峰波电描记性癫痫发作过程中快速突触神经元的活性。

获取原文
获取原文并翻译 | 示例

摘要

The conventional view is that the cortical paroxysmal depolarizing shift is a giant excitatory postsynaptic potential enhanced by various intrinsic neuronal currents. Other results point out, however, that synaptic inhibition remains functional in many forms of paroxysmal activities and that intense activation of GABAergic interneurons may accentuate the excitation of target pyramidal cells. To determine the role played by cortical inhibitory neurons in paroxysmal discharges, we used single and dual intracellular recordings from electrophysiologically identified neocortical neurons during spontaneously occurring and electrically induced spike-wave electrographic seizures in vivo. Conventional fast-spiking neurons (presumably local inhibitory interneurons) fired at a very high frequency during paroxysmal depolarizing shifts, which corresponded to the electroencephalogram 'spike' components of spike-wave complexes. The firing of fast-spiking neurons preceded the discharges of neighboring regular-spiking neurons. During electrographic seizures, the reversal potential of the GABA (type A)-mediated potentials in regular-spiking neurons was shifted to positive values by 20-30 mV. Data also show that the prolonged hyperpolarizations during the electroencephalogram 'wave' components of spike-wave electrographic seizures do not contain Cl(-)-dependent inhibitory potentials. Moreover, Cl(-)-dependent mechanisms were reduced or absent during the fast runs that are associated with spike-wave complexes in some paroxysms. We conclude that the strong activity of cortical inhibitory neurons during paroxysmal depolarizing shifts induces Cl(-)-dependent depolarizing postsynaptic potentials in target pyramidal neurons, which facilitate the development of electrographic seizures.
机译:传统观点认为,皮层阵发性去极化移位是由各种内在神经元电流增强的巨大兴奋性突触后电位。但是,其他结果指出,突触抑制在许多形式的阵发性活动中仍然起作用,并且强烈激活GABA能的中间神经元可能会增强对靶锥体细胞的刺激。为了确定皮质抑制性神经元在阵发性放电中所起的作用,我们在体内自发发生和电诱发的尖峰波电描记性癫痫发作中,使用了电生理学鉴定的新皮层神经元的单次和两次胞内记录。常规的快速突触神经元(大概是局部抑制性中间神经元)在阵发性去极化移位中以很高的频率发射,这对应于突波复合体的脑电图“突波”成分。快速放电的神经元的放电先于相邻的规则放电的神经元放电。在电图发作中,规律性加标神经元中GABA(A型)介导的电位的反向电位转变为正值20-30 mV。数据还显示,在尖峰波电描记图发作的脑电图“波”分量期间,延长的超极化不包含Cl(-)依赖性抑制电位。此外,在某些与发作相关的尖峰波复合物的快速运行过程中,依赖于Cl(-)的机制减少或缺失。我们得出结论,阵发性去极化移动期间皮层抑制神经元的强大活动诱导目标锥体神经元中的Cl(-)依赖型去极化突触后电位,从而促进电子癫痫发作的发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号