...
首页> 外文期刊>Neuroscience: An International Journal under the Editorial Direction of IBRO >Effects of tapering geometry and inhomogeneous ion channel distribution in a neuron model.
【24h】

Effects of tapering geometry and inhomogeneous ion channel distribution in a neuron model.

机译:渐缩的几何形状和神经元模型中不均匀的离子通道分布的影响。

获取原文
获取原文并翻译 | 示例
           

摘要

Recent experiments have produced direct evidence on the existence of various dendritic voltage-gated ion channels, indicating that these neuronal components are not just a passive medium for the propagation of synaptic excitation but a putative source of neuronal excitability that is reflected in the activity patterns occurring on the soma. In order to study possible changes in neuronal excitability when the distribution of dendritic voltage-activated channels is non-uniform, and the dendritic geometry is not necessarily cylindric, we have developed a neuron model that incorporates two voltage-activated currents [I(Na) and I(K)], and in which space-dependent distributions of the system parameters can be treated in a mathematically simple and efficient way. Simulation results with the model showed that both linearly and exponentially tapering geometries led to marked anisotropy of the propagation of excitation, favouring the soma-to-dendrite direction. Exponentially decaying densities of dendritic voltage-activated channels, with appropriate choice of the parameters, induced bistable behaviour between the normal resting state and an intrinsic, sustained oscillation with cylindric as well as linear and exponential tapering dendritic geometry. Bistability could not be evoked when the model was reduced to a space-independent one (point-like soma). These results suggest that both tapering dendritic geometry and inhomogeneous distribution of ion channels may crucially affect the propagation and integration of synaptic potentials, and that changes in dendritic channel densities might underlie pathological electrophysiological activities.
机译:最近的实验已直接证明存在各种树突状电压门控离子通道,表明这些神经元成分不仅是突触兴奋传播的被动介质,而且是神经元兴奋性的推定来源,反映在发生的活动模式中在躯体上。为了研究当树突状电压激活通道的分布不均匀且树突状几何结构不一定为圆柱形时神经元兴奋性可能发生的变化,我们开发了一种神经元模型,该模型结合了两个电压激活电流[I(Na)和I(K)],其中系统参数的空间相关分布可以用数学上简单有效的方式处理。该模型的仿真结果表明,线性和指数递减的几何形状都导致激发传播的明显各向异性,有利于体到树突的方向。通过适当选择参数,树枝状电压激活通道的指数衰减密度会在正常静止状态和圆柱内在的,持续的振荡以及线性和指数锥形的树枝状几何结构之间引起双稳态行为。当模型简化为与空间无关的模型(点状体细胞)时,无法唤起双稳态。这些结果表明,逐渐减小的树突状几何形状和离子通道的不均匀分布都可能会严重影响突触电位的传播和整合,并且树突状通道密度的变化可能是病理性电生理活动的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号