...
首页> 外文期刊>New Journal of Chemistry >Unifying the mechanisms for alkane dehydrogenation and alkene H/D exchange with [IrH_2(O_2CCF_3)(PAr_3)_2]: the key role of CF_3CO_2 in the 'sticky' alkane route
【24h】

Unifying the mechanisms for alkane dehydrogenation and alkene H/D exchange with [IrH_2(O_2CCF_3)(PAr_3)_2]: the key role of CF_3CO_2 in the 'sticky' alkane route

机译:[IrH_2(O_2CCF_3)(PAr_3)_2]统一烷烃脱氢和烯烃H / D交换的机制:CF_3CO_2在“粘性”烷烃路线中的关键作用

获取原文
获取原文并翻译 | 示例

摘要

To understand photochemical and thermal alkane activation with IrH_2(O_2CCF_3)(Par_3)_2 (Ar = p-FC_6H_4), H/D isotope scrambling between alkenes and IrD_2(O_2CCF_3)(Par_3)_2 was studied. No unique interpretation of the experimental data was possible, so DFT(B3PW91) calculations on the exchange process in Ir(H)_2(O_2CCF_3)(PH_3)_2(C_2H_4) were carried out to distinguish between the possibilities allowed by experiment. Of several possible mechanisms for H/D scrambling, one was strongly preferred and is therefore proposed here. It involves the insertion of the olefin to give an alkyl hydride that reductively eliminates to lead to a transition state that contains an #eta#~3-bound alkane. This transition state, which achieves a 1,1' geminal H/D exchange, is significantly lower in energy than a dihydrido carbene, located as a secondary minimum, eliminating the alternative carbene mechanism. The unexpectedly large binding energy (BDE) of the alkane ("sticky alkane") to the Ir(O_2CCF_3)(PH_3)_2 fragment (BDE = 11.9 kcal mol~(-1)) in this transition state is ascribed in part to the presence of a weakly-#sigma#- and #pi#-donating (CF_3CO_2) group trans to the alkane binding site. The H/D exchange selectivity observed requires that 1,1'-shifts (i.e., M oving to a geminal C-H bond, but not 1,3-shifts, be allowed in the alkane complex. In a key finding, a 1,3-shift in which the metal moves down the alkane chain is indeed found to have a much higher activation energy than the 1,1'-process and is therefore slow in our system. A 1,2-shift has not been considered since it would involve a strong steric hindrance at a tertiary carbon in this system. The mechanism via an alkane path provides an insight into the closely related photochemical and catalytic thermal alkane dehydrogenation processes mediated by IrH_2(O_2CCF_3)(Par_3)_2; the thermal route requires ~tBuCH=CH_2 as the hydrogen acceptor. These two alkane reactions are intimately related mechanistically to the isotope exchange because they are proposed to have the same intermediates, in particular the sticky alkane complex. Remarkably, the rate determining step of the thermal (150 deg C) alkane dehydrogenation process is predicted to be substitution of the hydrogen acceptor-derived alkane by the alkane substrate.
机译:为了了解IrH_2(O_2CCF_3)(Par_3)_2(Ar = p-FC_6H_4)的光化学和热烷烃活化作用,研究了烯烃与IrD_2(O_2CCF_3)(Par_3)_2之间的H / D同位素加扰。无法对实验数据进行唯一的解释,因此对Ir(H)_2(O_2CCF_3)(PH_3)_2(C_2H_4)中的交换过程进行了DFT(B3PW91)计算,以区分实验允许的可能性。在H / D加扰的几种可能机制中,强烈推荐一种,因此在此提出。它涉及烯烃的插入,以得到烷基氢化物,该烷基氢化物被还原消除,从而导致过渡态,该过渡态包含结合有η3的烷烃。这种实现1,1'双子H / D交换的过渡态的能量明显低于作为次要最小值的二氢卡宾,从而消除了卡宾机制。在此过渡态下,烷烃(“粘性烷烃”)与Ir(O_2CCF_3)(PH_3)_2片段(BDE = 11.9 kcal mol〜(-1))的意外大的结合能(BDE)部分归因于弱#sigma#-和#pi#-供体(CF_3CO_2)基团转移到烷烃结合位点。观察到的H / D交换选择性要求1,1'位移(即,向双键CH键迁移,但不允许1,3-位移)在烷烃络合物中。关键发现是1,3金属在烷烃链中向下移动的位移确实比1,1'过程具有更高的活化能,因此在我们的系统中速度很慢,因此未考虑过1,2移动。在该系统中的叔碳具有强的位阻,通过烷烃途径的机理提供了对由IrH_2(O_2CCF_3)(Par_3)_2介导的紧密相关的光化学和催化热烷烃脱氢过程的深入了解;热路线需要〜tBuCH = CH_2作为氢受体。这两个烷烃反应在机理上与同位素交换密切相关,因为它们被建议具有相同的中间体,尤其是粘性烷烃配合物。值得注意的是,热的速率确定步骤(150℃)烷烃脱氢剂据预测,这是烷烃底物取代了氢受体衍生的烷烃。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号