...
首页> 外文期刊>New Journal of Chemistry >Electrochemical synthesis of polyaniline crosslinked NiMoO4 nanofibre dendrites for energy storage devices
【24h】

Electrochemical synthesis of polyaniline crosslinked NiMoO4 nanofibre dendrites for energy storage devices

机译:聚苯胺交联的NiMoO4纳米纤维树突的电化学合成,用于储能装置

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Electrochemical synthesis of polyaniline deposited on a graphite electrode using p-toluenesulfonic acid has been carried out via a potentiodynamic method. The feasibility to store energy in polyaniline has been demonstrated in 1 M Na2SO4 electrolyte using cyclic voltammetry and charge-discharge analyses. The obtained low capacitance (247 mF cm(-2)) for polyaniline limits its practical application. Therefore, as an alternative approach, aniline is polymerized in the presence of a novel non-ionic surfactant (Quillaja Saponin) and a marginal increase in capacitance to 342 mF cm(-2) is observed. Adsorption of a surfactant on aniline resulted in a profound effect on its electrochemical behaviour. To further enhance the capacitance, innovatively, polyaniline is cross-linked with nickel molybdate (NiMoO4) using chitosan as a biopolymer. The cross-linked NiMoO4 showed an improved areal specific capacitance of 1250 mF cm(-2) and 85% of its initial capacitance is retained after 2000 cycles. The morphology of the cross-linked NiMoO4 deduced using a field emission scanning microscope and a transmission electron microscope showed the formation of nanofibre-like dendrites having a porous network. The intramolecular interactions that facilitate the electron transfer path with more active sites for nucleation are attributed to higher capacitance. X-ray photoelectron spectroscopy measurements ascertain the presence of NiMoO4 in the aniline composite after the electropolymerization process. Overall, the surfactant exhibited surface functionality, whereas the biopolymer tuned the redox reactions of the NiMoO4 electrode.
机译:已经通过电位动力学方法进行了使用对甲苯磺酸沉积在石墨电极上的聚苯胺的电化学合成。使用循环伏安法和充放电分析,已在1 M Na2SO4电解质中证明了在聚苯胺中存储能量的可行性。聚苯胺获得的低电容(247 mF cm(-2))限制了其实际应用。因此,作为一种替代方法,在新型非离子表面活性剂(Quillaja Saponin)的存在下聚合苯胺,并观察到电容的边缘增加到342 mF cm(-2)。表面活性剂在苯胺上的吸附对其电化学行为产生深远的影响。为了进一步增强电容,创新性地使用壳聚糖作为生物聚合物,将聚苯胺与钼酸镍(NiMoO4)交联。交联的NiMoO4表现出1250 mF cm(-2)的改善的单位面积比电容,并在2000次循环后保留了其初始电容的85%。使用场发射扫描显微镜和透射电子显微镜推断的交联NiMoO 4的形态显示出具有多孔网络的纳米纤维状树突的形成。分子内相互作用促进电子转移路径具有更多的成核活性位点,归因于较高的电容。 X射线光电子能谱测量确定了电聚合过程后苯胺复合物中NiMoO4的存在。总体而言,表面活性剂表现出表面功能性,而生物聚合物调节了NiMoO4电极的氧化还原反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号