首页> 外文期刊>Neuropsychologia >The role of the striatum in goal activation of cascaded actions
【24h】

The role of the striatum in goal activation of cascaded actions

机译:纹状体在级联动作目标激活中的作用

获取原文
获取原文并翻译 | 示例
       

摘要

Successful multitasking requires subjects to flexibly activate task goals important to accomplish the task at hand. However, the neural mechanisms underlying goal activation in multitasking are unknown. Based on neurobiological models of action selection, we expected that the extent to which task-goals are processed with some overlap that strongly depends on striatal structures. Therefore, we applied a stop-change paradigm to examine multitasking using fMRI and manipulated the delay between the stop stimulus and the subsequently following change signal towards a new GO response (stop-change delay; SCD). The manipulation of the SCD was introduced to achieve varying amounts of overlap of the two task-goals (stop goal, change goal). This manipulation allowed the calculation of a stop-change delay-reaction time function (SCD-RT function), with the slope of this function, reflecting on the degree of overlap between the stop and the change goal. Data analysis revealed that change trials, independent of their SCD, showed an activation pattern encompassing frontal and parietal cortical regions. Contrasting the two main SCD (long vs. short SCD) conditions with each other showed a stronger BOLD (blood oxygenation level dependent) signal activation of the caudate and the right inferior frontal gyrus in trials with a long SCD compared to trials with a short SCD. Follow-up analyses showed that activation differences of the caudate between the two SCDs drive the effect. Integrating the fMRI data with the slope of the SCD-RT function indicated that the degree of overlap of stop and change processes is determined by the degree of striatal activation on a serial-to-parallel continuum. In conclusion, the findings acknowledge the role of the basal ganglia as an important structure determining action selection processes via a network of neocortical and striatal structures, in terms of an extended multiple demand system.
机译:成功的多任务处理要求受试者灵活地激活对于完成手头任务很重要的任务目标。但是,在多任务处理中激活目标的神经机制尚不清楚。基于行动选择的神经生物学模型,我们期望任务目标的处理程度与某些重叠部分密切相关,这在很大程度上取决于纹状体结构。因此,我们应用了停止变化范式来使用fMRI检查多任务处理,并操纵了停止刺激和随后的变化信号之间的延迟,以产生新的GO响应(停止变化延迟; SCD)。引入SCD的操作是为了实现两个任务目标(停止目标,变更目标)的不同程度的重叠。通过这种操作,可以计算出停止变化延迟反应时间函数(SCD-RT函数),该函数的斜率反映了停止与变化目标之间的重叠程度。数据分析表明,与SCD无关的变化试验显示,激活模式涵盖额叶和顶叶皮质区域。与长SCD的试验相比,长SCD的试验中两个主要SCD(长SCD与短SCD)情况相互比较,显示尾巴和右下额回的BOLD(取决于血液氧合水平)信号激活更强。后续分析表明,两个SCD之间尾状核的激活差异驱动了这种效应。将fMRI数据与SCD-RT函数的斜率进行积分表明,停止和变化过程的重叠程度由串行到并行连续体上的纹状体激活程度决定。总之,研究结果认可了基底神经节的作用,作为一个重要的结构,通过扩展的多需求系统,它通过新皮层和纹状体结构网络决定了行动选择过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号