...
首页> 外文期刊>NeuroImage >The use of stationarity and nonstationarity in the detection and analysis of neural oscillations.
【24h】

The use of stationarity and nonstationarity in the detection and analysis of neural oscillations.

机译:平稳性和非平稳性在神经振荡检测和分析中的使用。

获取原文
获取原文并翻译 | 示例
           

摘要

Using available signal (i.e., spectral and time-frequency) analysis methods, it can be difficult to detect neural oscillations because of their continuously changing properties (i.e., nonstationarities) and the noise in which they are embedded. Here, we introduce fractally scaled envelope modulation (FSEM) estimation which is sensitive specifically to the changing properties of oscillatory activity. FSEM utilizes the fractal characteristic of wavelet transforms to produce a compact, two-dimensional representation of time series data where signal components at each frequency are made directly comparable according to the spectral distribution of their envelope modulations. This allows the straightforward identification of neural oscillations and other signal components with an envelope structure different from noise. For stable oscillations, we demonstrate how partition-referenced spectral estimation (PRSE) removes the noise slope from spectral estimates, yielding a level estimate where only peaks signifying the presence of oscillatory activity remain. The functionality of these methods is demonstrated with simulations and by analyzing MEG data from human auditory brain areas. FSEM uncovered oscillations in the 9- to 12-Hz and 15- to 18-Hz ranges whereas traditional spectral estimates were able to detect oscillations only in the former range. FSEM further showed that the oscillations exhibited envelope modulations spanning 3-7 s. Thus, FSEM effectively reveals oscillations undetectable with spectral estimates and allows the use of EEG and MEG for studying cognitive processes when the common approach of stimulus time-locked averaging of the measured signal is unfeasible.
机译:使用可用的信号(即频谱和时频)分析方法,由于其不断变化的特性(即非平稳性)和嵌入其中的噪声,可能难以检测到神经振荡。在这里,我们介绍了分形比例的包络调制(FSEM)估计,它对振荡活动的变化特性特别敏感。 FSEM利用小波变换的分形特征来生成时间序列数据的紧凑的二维表示,其中,根据其包络调制的频谱分布,可以使每个频率的信号分量直接可比。这样可以直接识别神经振荡和其他信号成分,其包络结构不同于噪声。对于稳定的振荡,我们演示了分区参考频谱估计(PRSE)如何从频谱估计中消除噪声斜率,从而产生一个电平估计,其中仅剩下表示振荡活动存在的峰值。这些方法的功能通过仿真和分析来自人类听觉大脑区域的MEG数据得到证明。 FSEM揭示了9至12 Hz和15至18 Hz范围内的振荡,而传统的频谱估计只能检测前一个范围内的振荡。 FSEM进一步表明,振荡表现出跨3-7 s的包络调制。因此,FSEM有效地揭示了频谱估计无法检测到的振荡,并在无法对刺激的信号进行时间锁定平均的常用方法时,允许使用EEG和MEG研究认知过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号