...
首页> 外文期刊>NeuroImage >Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease.
【24h】

Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease.

机译:多模式多任务学习,用于联合预测阿尔茨海默氏病的多个回归和分类变量。

获取原文
获取原文并翻译 | 示例

摘要

Many machine learning and pattern classification methods have been applied to the diagnosis of Alzheimer's disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). Recently, rather than predicting categorical variables as in classification, several pattern regression methods have also been used to estimate continuous clinical variables from brain images. However, most existing regression methods focus on estimating multiple clinical variables separately and thus cannot utilize the intrinsic useful correlation information among different clinical variables. On the other hand, in those regression methods, only a single modality of data (usually only the structural MRI) is often used, without considering the complementary information that can be provided by different modalities. In this paper, we propose a general methodology, namely multi-modal multi-task (M3T) learning, to jointly predict multiple variables from multi-modal data. Here, the variables include not only the clinical variables used for regression but also the categorical variable used for classification, with different tasks corresponding to prediction of different variables. Specifically, our method contains two key components, i.e., (1) a multi-task feature selection which selects the common subset of relevant features for multiple variables from each modality, and (2) a multi-modal support vector machine which fuses the above-selected features from all modalities to predict multiple (regression and classification) variables. To validate our method, we perform two sets of experiments on ADNI baseline MRI, FDG-PET, and cerebrospinal fluid (CSF) data from 45 AD patients, 91 MCI patients, and 50 healthy controls (HC). In the first set of experiments, we estimate two clinical variables such as Mini Mental State Examination (MMSE) and Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), as well as one categorical variable (with value of 'AD', 'MCI' or 'HC'), from the baseline MRI, FDG-PET, and CSF data. In the second set of experiments, we predict the 2-year changes of MMSE and ADAS-Cog scores and also the conversion of MCI to AD from the baseline MRI, FDG-PET, and CSF data. The results on both sets of experiments demonstrate that our proposed M3T learning scheme can achieve better performance on both regression and classification tasks than the conventional learning methods.
机译:许多机器学习和模式分类方法已被用于诊断阿尔茨海默氏病(AD)及其前驱阶段,即轻度认知障碍(MCI)。最近,不是像分类中那样预测分类变量,而是还使用了几种模式回归方法来从大脑图像估计连续的临床变量。然而,大多数现有的回归方法侧重于分别估计多个临床变量,因此不能利用不同临床变量之间的内在有用的相关信息。另一方面,在那些回归方法中,通常仅使用一种数据模式(通常仅使用结构MRI),而没有考虑可以由不同模式提供的补充信息。在本文中,我们提出了一种通用方法,即多模式多任务(M3T)学习,以从多模式数据中共同预测多个变量。在此,变量不仅包括用于回归的临床变量,还包括用于分类的类别变量,其中不同的任务对应于不同变量的预测。具体来说,我们的方法包含两个关键组成部分,即(1)多任务特征选择,它从每个模态中为多个变量选择相关特征的公共子集,以及(2)融合了上述特征的多模态支持向量机所有模态中选定的特征以预测多个(回归和分类)变量。为了验证我们的方法,我们对45名AD患者,91名MCI患者和50名健康对照(HC)的ADNI基线MRI,FDG-PET和脑脊液(CSF)数据进行了两组实验。在第一组实验中,我们估算了两个临床变量,例如迷你精神状态检查(MMSE)和阿尔茨海默氏病评估量表-认知子量表(ADAS-Cog),以及一个分类变量(值“ AD”,“ MCI”或“ HC”),来自基线MRI,FDG-PET和CSF数据。在第二组实验中,我们根据基线MRI,FDG-PET和CSF数据预测MMSE和ADAS-Cog评分的2年变化,以及MCI向AD的转化。两组实验的结果表明,我们提出的M3T学习方案在回归和分类任务上均比常规学习方法具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号