...
首页> 外文期刊>Neuromuscular disorders: NMD >Membrane excitability and excitation-contraction uncoupling in muscle fatigue
【24h】

Membrane excitability and excitation-contraction uncoupling in muscle fatigue

机译:膜疲劳中膜的兴奋性和兴奋收缩解偶联

获取原文
获取原文并翻译 | 示例
           

摘要

High-frequency tetanic stimulation is associated with an increase in extracellular and T-tubular K+ and changes of Na+ and Cl- concentrations, membrane depolarization as well as inactivation of voltage-gated Na+ channels. These alterations are expected to lead to fiber inexcitability, which is largely prevented by mechanisms intrinsic or extrinsic to muscle fibers. They act by adapting electrical membrane properties or by accelerating the reconstitution of ionic homeostasis. The high Cl- conductance of muscle fibers supports the K+ conductance in fast and complete repolarization and creates a mechanism for the fast reuptake of K+, thereby reducing the T-tubular K+ accumulation. Excitability is increased by a Ca2+ and proteinkinase C dependent inhibition of the Cl- conductance which is efficient especially in the T-tubular system. Several mediators activate the Na+/K+-ATPase and thus enhance the restoration of ionic homeostasis. Examples are purines (ATP, ADP), calcitonin-gene related peptide and adrenaline. It is also necessary to adapt the strength of the sarcoplasmic Ca2+ concentration to the requirements of tetanic contractions. An overwhelming Ca2+ signal leads to enzymatically driven excitation-contraction uncoupling. This process is most likely driven by the Ca2+ dependent protease μ-calpain and might lead to the long-lasting fatigue observed after excessive physical activity.
机译:高频强直性刺激与细胞外和T管中K +的增加以及Na +和Cl-浓度的变化,膜去极化以及电压门控Na +通道的失活有关。预期这些改变会导致纤维不兴奋,这在很大程度上由肌肉纤维的内在或外在机制所阻止。它们通过适应电膜特性或通过加速离子稳态的重建来发挥作用。肌肉纤维的高Cl-电导率可在快速且完全的复极化过程中支持K +电导率,并为快速吸收K +提供了一种机制,从而减少了T管中K +的积累。 Ca 2+和蛋白激酶C依赖性的Cl-电导抑制作用增加了兴奋性,这在T管系统中尤其有效。几种介体可激活Na + / K + -ATPase,从而增强离子稳态的恢复。实例是嘌呤(ATP,ADP),降钙素基因相关肽和肾上腺素。还需要使肌浆Ca2 +浓度的强度适应强直性收缩的要求。压倒性的Ca2 +信号导致酶促激发-收缩解偶联。此过程最有可能是由Ca2 +依赖性蛋白酶μ-钙蛋白酶驱动的,并且可能导致过度的体育锻炼后观察到的持久疲劳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号