...
首页> 外文期刊>Neurobiology of learning and memory >Metabolic mapping of rat forebrain and midbrain during delay and trace eyeblink conditioning.
【24h】

Metabolic mapping of rat forebrain and midbrain during delay and trace eyeblink conditioning.

机译:延迟和痕量眨眼调节过程中大鼠前脑和中脑的代谢图谱。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

While the essential neural circuitry for delay eyeblink conditioning has been largely identified, much of the neural circuitry for trace conditioning has yet to be determined. The major difference between delay and trace conditioning is a time gap between the presentation of the conditioned stimulus (CS) and the unconditioned stimulus (US) during trace conditioning. It is this time gap, which accounts for the additional memory component and may require extra neural structures, including hippocampus and prefrontal cortex. A metabolic marker of energy use, radioactively labeled glucose analog, was used to compare differences in glucose analog uptake between delay, trace, and unpaired experimental groups (rats, Long-Evans), to identify possible new areas of involvement within forebrain and midbrain. Here, we identify increased 2-DG uptake for the delay group compared to the unpaired group in various areas including: the medial geniculate nuclei (MGN), the amygdala, cingulate cortex, auditory cortex, medial dorsal thalamus, and frontal cortices. For the trace group, compared to the unpaired group, there was an increase in 2-DG uptake for the medial orbital frontal cortex and the medial MGN. The trace group also exhibited more increases lateralized to the right hemisphere, opposite to the side of US delivery, in various areas including: CA1, subiculum, presubiculum, perirhinal cortex, ventral and dorsal MGN, and the basolateral and central amygdala. While some of these areas have been identified as important for delay or trace conditioning, some new structures have been identified such as the orbital frontal cortex for both delay and trace groups.
机译:虽然已经广泛地确定了用于延迟眨眼条件调节的基本神经电路,但尚未确定用于痕量调节的许多神经电路。延迟和痕量调节之间的主要区别是在痕量调节过程中,条件刺激(CS)和未条件刺激(US)的出现之间存在时间间隔。正是这个时间间隔,这造成了额外的记忆成分,并可能需要额外的神经结构,包括海马和前额叶皮层。使用能量代谢标记物(放射性标记的葡萄糖类似物)来比较延迟,痕量和未配对实验组(大鼠,Long-Evans)之间葡萄糖类似物摄取的差异,以识别前脑和中脑中可能涉及的新区域。在这里,我们确定了延迟组与未配对组相比在各个领域的2-DG摄取增加,这些领域包括:内侧膝状核(MGN),杏仁核,扣带回皮层,听觉皮层,内侧背丘脑和额叶皮层。对于痕量组,与未配对组相比,内侧眶额叶皮层和内侧MGN的2-DG摄取增加。微量组还表现出更多的向右半球侧向增加的趋势,与美国分娩的一侧相反,在各个领域包括:CA1,下丘脑,前黏膜,周围神经皮层,腹侧和背侧MGN,以及基底外侧和中央杏仁核。虽然这些区域中的某些区域已被确定对延迟或痕量调节很重要,但已经确定了一些新结构,例如对于延迟和痕量组的眶额叶皮层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号