首页> 外文期刊>Near surface geophysics >Using Nuclear Magnetic Resonance and Transient Electromagnetics to characterise water distribution beneath an ice covered volcanic crater: the case of Sherman Crater Mt. Baker, Washington
【24h】

Using Nuclear Magnetic Resonance and Transient Electromagnetics to characterise water distribution beneath an ice covered volcanic crater: the case of Sherman Crater Mt. Baker, Washington

机译:利用核磁共振和瞬变电磁学描述冰覆盖的火山口下方的水分布:Sherman Crater Mt.华盛顿贝克

获取原文
获取原文并翻译 | 示例
           

摘要

Surface and laboratory Nuclear Magnetic Resonance (NMR) measurements combined with transient electromagnetic (TEM) data are powerful tools for subsurface water detection. Surface NMR (sNMR) and TEM soundings,laboratory NMR, complex resistivity, and X-Ray Diffraction (XRD) analysis were all conducted to characterise the distribution of water within Sherman Crater on Mt. Baker, WA. Clay rich rocks, particularly if water saturated, can weaken volcanoes, thereby increasing the potential for catastrophic sector collapses that can lead to far-travelled, destructive debris flows. Detecting the presence and volume of shallow groundwater is critical for evaluating these landslide hazards. The TEM data identified a low resistivity layer (<10 ohm-m), under 60 m of glacial ice related to water saturated clays. The TEM struggles to resolve the presence or absence of a plausible thin layer of bulk liquid water on top of the clay. The sNMR measurements did not produce any observable signal, indicating the lack of substantial accumulated bulk water below the ice. Laboratory analysis on a sample from the crater wall that likely represented the clays beneath the ice confirmed that the controlling factor for the lack of sNMR signal was the fine-grained nature of the media. The laboratory measurements further indicated that small pores in clays detected by the XRD contain as much as 50% water, establishing an upper bound on the water content in the clay layer. Forward modelling of geologic scenarios revealed that bulk water layers as thin as 1/2 m between the ice and clay layer would have been detectable using sNMR. The instrumentation conditions which would allow for sNMR detection of the clay layer are investigated. Using current instrumentation the combined analysis of the TEM and sNMR data allow for valuable characterisation of the groundwater system in the crater. The sNMR is able to reduce the uncertainty of the TEM in regards to the presence of a bulk water layer, a valuable piece of information in hazard assessment.
机译:地表和实验室核磁共振(NMR)测量与瞬态电磁(TEM)数据相结合,是用于地下水探测的强大工具。进行了表面NMR(sNMR)和TEM探测,实验室NMR,复电阻率和X射线衍射(XRD)分析,以表征山上Sherman Crater中水的分布。华盛顿州贝克。富含粘土的岩石,尤其是在水饱和的情况下,会削弱火山的活动,从而增加灾难性部门倒塌的可能性,从而导致远距离破坏性的泥石流。检测浅层地下水的存在和数量对于评估这些滑坡灾害至关重要。 TEM数据确定了在与含水饱和粘土有关的60 m冰川冰下的低电阻率层(<10 ohm-m)。 TEM努力解决粘土顶部是否存在似乎似的散装液态水薄层的问题。 sNMR测量未产生任何可观察到的信号,表明冰下缺乏大量累积的大量水。对陨石坑壁样品的实验室分析可能代表了冰下的粘土,这证实了缺少sNMR信号的控制因素是介质的细颗粒性质。实验室测量还表明,通过XRD检测到的粘土中的小孔含有多达50%的水,从而确定了粘土层中水含量的上限。地质情况的正演模型显示,使用sNMR可以检测到冰层和粘土层之间只有1/2 m的薄水层。研究了允许对粘土层进行sNMR检测的仪器条件。使用当前的仪器,TEM和sNMR数据的组合分析可以对火山口中的地下水系统进行有价值的表征。 sNMR能够减少关于存在大量水层的TEM的不确定性,这是危害评估中的宝贵信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号