【24h】

ANALYSIS OF AN OPTIMAL CONTROL MODEL OF MULTI-JOINT ARM MOVEMENTS

机译:多关节臂运动的最优控制模型分析

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we propose a model of biological motor control for generation of goal-directed multi-joint arm movements, and study the formation of muscle control inputs and invariant kinematic features of movements. The model has a hierarchical structure that can determine the control inputs for a set of redundant muscles without ally inverse computation. Calculation of motor commands is divided into two stages, each of which performs a transformation of motor commands from one coordinate system to another. At the first level, a central controller in the brain accepts instructions from higher centers, which represent the motor goal in the Cartesian space. The controller computes joint equilibrium trajectories and excitation signals according to a minimum effort criterion. At the second level, a neural network in the spinal cord translates the excitation signals and equilibrium trajectories into control commands to three pairs of antagonist muscles which are redundant for a two-joint arm. No inverse computation is required in the determination of individual muscle commands. The minimum effort controller can produce arm movements whose dynamic and kinematic features are similar to those of voluntary arm movements. For fast movements, the hand approaches a target position along a near-straight path with a smooth bell-shaped velocity. The equilibrium trajectories in X and Y show an 'N' shape, but the end-point equilibrium path zigzags around the hand path. Joint movements are not always smooth. Joint reversal is found in movements in some directions. The excitation signals have a triphasic (or biphasic) pulse pattern, which leads to stereotyped triphasic (or biphasic) bursts in muscle control inputs, and a dynamically modulated joint stiffness. There is a fixed sequence of muscle activation from proximal muscles to distal muscles. The order is preserved in all movements. For slow movements, it is shown that a constant joint stiffness is necessary to produce a smooth movement with a bell-shaped velocity. Scaled movements call be reproduced by varying the constraints on the maximal level of excitation signals according to the speed of movement. When the inertial parameters of the arm are altered, movement trajectories can be kept invariant by adjusting the pulse height values, showing the ability to adapt to load changes. These results agree with a wide range of experimental observations on human voluntary movements. [References: 38]
机译:在本文中,我们提出了一种用于生成目标定向多关节手臂运动的生物运动控制模型,并研究了肌肉控制输入的形成和运动的不变运动学特征。该模型具有分层结构,可以确定一组冗余肌肉的控制输入,而无需进行全体逆运算。电机指令的计算分为两个阶段,每个阶段都执行电机指令从一个坐标系到另一个坐标系的转换。在第一层,大脑中的中央控制器接受来自较高中心的指令,这些指令代表笛卡尔空间中的运动目标。控制器根据最小努力标准计算关节平衡轨迹和激励信号。在第二级,脊髓中的神经网络将激励信号和平衡轨迹转换成对三对拮抗肌的控制命令,这对两关节手臂是多余的。在确定单个肌肉命令时不需要逆计算。最小省力控制器可以产生其手臂的动态和运动学特征与自愿手臂运动相似的手臂运动。为了快速运动,手会以接近钟形的路径以平滑的钟形速度接近目标位置。 X和Y中的平衡轨迹呈'N'形,但终点平衡路径在手部路径周围呈锯齿状。关节运动并不总是很平稳。在某些方向的运动中发现关节反转。激励信号具有三相(或双相)脉冲模式,可导致肌肉控制输入中的定型三相(或双相)脉冲,以及动态调制的关节刚度。从近端肌肉到远端肌肉有固定的肌肉激活顺序。该顺序在所有动作中均被保留。对于慢速运动,显示出恒定的关节刚度对于产生具有钟形速度的平稳运动是必需的。通过根据运动的速度改变对激励信号的最大电平的约束,可以再现缩放运动。当手臂的惯性参数改变时,可以通过调整脉冲高度值来保持运动轨迹不变,从而显示出适应负载变化的能力。这些结果与关于人类自愿运动的广泛实验观察结果一致。 [参考:38]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号