首页> 外文期刊>Nature nanotechnology >Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps
【24h】

Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps

机译:具有纳米级间隙的电介质和金属平行板之间的辐射热导

获取原文
获取原文并翻译 | 示例
           

摘要

Recent experiments(1-4) have demonstrated that radiative heat transfer between objects separated by nanometre-scale gaps considerably exceeds the predictions of far-field radiation theories(5). Exploiting this near-field enhancement is of great interest for emerging technologies such as near-field thermophotovoltaics and nano-lithography(6-13) because of the expected increases in efficiency, power conversion or resolution in these applications(7,11). Past measurements, however, were performed using tip-plate or sphere-plate configurations and failed to realize the orders of magnitude increases in radiative heat currents predicted from near-field radiative heat transfer theory(9,14). Here, we report 100- to 1,000-fold enhancements (at room temperature) in the radiative conductance between parallel-planar surfaces at gap sizes below 100 nm, in agreement with the predictions of near-field theories(9,14). Our measurements were performed in vacuum gaps between prototypical materials (SiO2-SiO2, Au-Au, SiO2-Au and Au-Si) using two microdevices and a custom-built nanopositioning platform(15), which allows precise control over a broad range of gap sizes (from <100 nm to 10 mu m). Our experimental set-up will enable systematic studies of a variety of near-field-based thermal phenomena(16-18), with important implications for thermophotovoltaic applications(7,19,20), that have been predicted but have defied experimental verification.
机译:最近的实验(1-4)表明,被纳米级间隙分隔的物体之间的辐射热传递大大超过了远场辐射理论的预测(5)。利用近场增强技术对新兴技术如近场热光伏技术和纳米光刻技术具有极大的兴趣(6-13),因为这些应用有望提高效率,功率转换或分辨率(7,11)。然而,过去的测量是使用顶板或球板配置进行的,未能实现根据近场辐射传热理论预测的辐射热流数量级增加(9,14)。在这里,我们报告了在小于100 nm的间隙尺寸下,平行平面之间的辐射电导(在室温下)提高了100到1,000倍,这与近场理论的预测一致(9,14)。我们的测量是在原型材料(SiO2-SiO2,Au-Au,SiO2-Au和Au-Si)之间的真空间隙中使用两个微型设备和定制的纳米定位平台进行的(15),可以在很大范围内进行精确控制间隙尺寸(<100 nm至10μm)。我们的实验装置将能够对各种基于近场的热现象进行系统研究(16-18),这对热光电应用(7、19、20)具有重要意义,这些应用已被预测但未经过实验验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号