首页> 外文期刊>Nanotechnology >A parametric study of TiO2/CuInS2 nanocomposite solar cells: how cell thickness, buffer layer thickness, and TiO2 particle size affect performance
【24h】

A parametric study of TiO2/CuInS2 nanocomposite solar cells: how cell thickness, buffer layer thickness, and TiO2 particle size affect performance

机译:TiO2 / CuInS2纳米复合太阳能电池的参数研究:电池厚度,缓冲层厚度和TiO2粒径如何影响性能

获取原文
获取原文并翻译 | 示例
           

摘要

3D CuInS2/TiO2 nanocomposite solar cell performance is strongly influenced by several structural factors, including cell thickness, buffer layer thickness, and the morphology of the TiO2 nanoparticulate matrix. To delineate the effect of these structural factors on photovoltaic performance, a series of parametric studies are performed where a single structural parameter is varied ( TiO2 nanoparticulate matrix thickness, In2S3 buffer layer thickness, or TiO2 particle size) while all other fabrication conditions are held constant. The best overall performance ( 3.0% efficiency at AM 1.5) is achieved from a device with TiO2 matrix thickness approximate to 200 nm, In2S3 buffer layer thickness approximate to 60 nm, and TiO2 nanoparticulate size = 300 nm. Notably, the film thickness in the best-performing cell ( 200 nm) is less than the TiO2 particle size ( 300 nm), corresponding to a discontinuous nanoparticulate film. Thicker TiO2 nanoparticulate films or smaller TiO2 particles sizes lead to decreased performance due to increased charge transport resistance. However, the performance from a planar cell ( where the TiO2 nanoparticulate layer is not used) is inferior to the performance from the better-optimized 3D cells, indicating that some degree of nanostructuring improves performance. Device performance is also observed to depend strongly on In2S3 buffer layer thickness, with optimal performance achieved for a buffer layer thickness of approximately 60 nm. The optimal buffer layer thickness is governed by two opposing factors: increasing the buffer layer thickness improves the interfacial characteristics ( as measured by decreasing leakage conductance, G) but also screens the incoming light and causes an increase in the charge transport resistance ( as measured by the cell series resistance, R-s).
机译:3D CuInS2 / TiO2纳米复合太阳能电池的性能受多种结构因素的强烈影响,包括电池厚度,缓冲层厚度和TiO2纳米颗粒基质的形态。为了描述这些结构因素对光伏性能的影响,进行了一系列参数研究,其中改变了单个结构参数(TiO2纳米颗粒基质厚度,In2S3缓冲层厚度或TiO2粒径),而所有其他制造条件均保持不变。最佳的总体性能(在AM 1.5时效率为3.0%)是由以下设备获得的:TiO2基质厚度约为200 nm,In2S3缓冲层厚度约为60 nm,TiO2纳米颗粒尺寸= 300 nm。值得注意的是,表现最佳的晶格中的膜厚(200 nm)小于TiO2粒径(300 nm),对应于不连续的纳米颗粒膜。较厚的TiO2纳米颗粒薄膜或较小的TiO2颗粒由于增加的电荷传输阻力而导致性能下降。但是,平面电池(未使用TiO2纳米颗粒层)的性能不如最佳化3D电池的性能,这表明某种程度的纳米结构可以改善性能。还观察到器件性能在很大程度上取决于In2S3缓冲层的厚度,对于约60 nm的缓冲层厚度可获得最佳性能。最佳缓冲层厚度受两个相反的因素控制:增加缓冲层厚度可改善界面特性(如通过降低漏电导率G来衡量),但同时也会屏蔽入射光并引起电荷传输电阻的增加(以I表示)。电池串联电阻(Rs)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号