...
首页> 外文期刊>Nanotechnology >Feature-oriented scanning methodology for probe microscopy and nanotechnology
【24h】

Feature-oriented scanning methodology for probe microscopy and nanotechnology

机译:探针显微镜和纳米技术的面向特征的扫描方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A real-time scanning algorithm is suggested which uses features of the surface as reference points at relative movements. Generally defined hill- or pit-like topography elements are taken as the features. The operation of the algorithm is based upon local recognition of the features and their connection to each other. The permissible class of surfaces includes ordered, partially ordered, or disordered surfaces if their features have comparable extents in the scan plane. The method allows one to exclude the negative influence of thermodrift, creep, and hysteresis over the performance of a scanning probe microscope. Owing to the possibility of carrying out an unlimited number of averages, the precision of measurements can be considerably increased. The distinctive feature of the method is its ability of topography reconstruction when the ultimate details are smaller than those detectable by a conventional microscope scan. The suggested approach eliminates the restrictions on scan size. Nonlinearity, nonorthogonality, cross coupling of manipulators as well as the Abbe offset error are corrected with the use of scan-space-distributed calibration coefficients which are determined automatically in the course of measuring a standard surface by the given method. The ways of precise probe positioning by local surface features within the fine manipulator field and the coarse manipulator field, automatic probe return into the operational zone after sample dismounting, automatic determination of exact relative position of the probes in multiprobe instruments, as well as automatic successive application of the whole set of probes to the same object on the surface are proposed. The possibility of performing accurately localized low-noise spectroscopy is demonstrated. The developed methodology is applicable for any scanning probe devices.
机译:提出了一种实时扫描算法,该算法将表面特征用作相对运动的参考点。通常将定义为丘陵或坑状的地形元素作为特征。算法的操作基于特征的局部识别及其相互之间的联系。如果表面的特征在扫描平面中具有相似的范围,则允许的表面类别包括有序,部分有序或无序的表面。该方法可以消除热漂移,蠕变和滞后对扫描探针显微镜性能的负面影响。由于可以执行无限数量的平均值,因此可以显着提高测量精度。该方法的独特之处在于,当最终细节小于常规显微镜扫描所能检测到的细节时,其能够重建地形。建议的方法消除了对扫描大小的限制。通过使用扫描空间分布的校准系数来校正机械手的非线性,非正交,交叉耦合以及阿贝偏移误差,这些校准系数是通过给定方法在测量标准表面的过程中自动确定的。通过精细操作器场和粗糙操作器场中的局部表面特征进行精确探针定位的方法,卸下样品后自动使探针返回操作区,自动确定多探针仪器中探针的精确相对位置以及自动连续提出将整套探针应用于表面上的同一物体。演示了执行精确定位的低噪声光谱的可能性。开发的方法适用于任何扫描探针设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号