...
首页> 外文期刊>Nanotechnology >Increased endothelial cell adhesion and elongation on micron-patterned nano-rough poly(dimethylsiloxane) films
【24h】

Increased endothelial cell adhesion and elongation on micron-patterned nano-rough poly(dimethylsiloxane) films

机译:在微米图案的纳米粗糙聚二甲基硅氧烷薄膜上增加内皮细胞的粘附和伸长

获取原文
获取原文并翻译 | 示例

摘要

The success of synthetic vascular grafts is largely determined by their ability to promote vital endothelial cell functions such as adhesion, alignment, proliferation, and extracellular matrix (ECM) deposition. Developing such biomaterials requires the design and fabrication of materials that mimic select properties of native extracellular matrices. Furthermore, cells of the native endothelium have elongated and aligned morphology in the direction of blood flow, yet few materials promote this type of morphology initially, but rather rely on blood flow to orient endothelial cells. Therefore, the objective of this in vitro study was to design a biomaterial that mimics the conditions of the micro- and nano-environment of vascular intima tissue suitable for endothelial cell adhesion and elongation to improve the efficacy of small synthetic vascular grafts. Towards this end, patterned poly(dimethylsiloxane) (PDMS) films consisting of periodic arrays of nano-grooves (500 nm), with spacings ranging from 22 to 80 μm, and alternating nano- and micron roughness were fabricated using a novel electron beam physical vapor deposition method followed by polymer casting. By varying pattern spacing, the area of micron- and nano-rough surface was controlled. In vitro rat aortic endothelial cell adhesion and elongation studies indicated that endothelial cell function was enhanced on patterned PDMS surfaces with the widest spacing and greatest surface area of nano-roughness, as compared to more narrow pattern spacings and non-patterned PDMS surfaces. Specifically, endothelial cells adherent on PDMS patterned films of the widest spacing (greatest nano-rough area) displayed almost twice as much elongation as cells on non-patterned surfaces. For these reasons, the present study highlighted design criteria (the use of micron patterns of nano-features on PDMS) that may contribute to the intelligent design of new-generation vascular grafts.
机译:合成血管移植物的成功很大程度上取决于它们促进重要的内皮细胞功能(如粘附,对准,增殖和细胞外基质(ECM)沉积)的能力。开发这种生物材料需要设计和制造模仿天然细胞外基质选择特性的材料。此外,天然内皮细胞在血流方向上具有拉长且排列的形态,但是很少有材料最初会促进这种形态,而是依靠血流来定向内皮细胞。因此,该体外研究的目的是设计一种生物材料,该材料模仿适于内皮细胞粘附和伸长的血管内膜组织的微环境和纳米环境的条件,以改善小型人造血管移植物的功效。为此,使用新型电子束物理技术制作了图案化的聚(二甲基硅氧烷)(PDMS)膜,该膜由周期性排列的纳米沟槽(500 nm)组成,间距范围为22至80μm,并且具有交替的纳米和微米粗糙度气相沉积法,然后进行聚合物浇铸。通过改变图案间距,可以控制微米级和纳米级粗糙表面的面积。体外大鼠主动脉内皮细胞粘附和伸长的研究表明,与更窄的图案间距和未图案化的PDMS表面相比,图案化的PDMS表面上的内皮细胞功能得到了增强,具有最大的间距和最大的纳米粗糙度。具体而言,粘附在最宽间距(最大的纳米粗糙区域)的PDMS图案化膜上的内皮细胞的伸长率几乎是非图案化表面上细胞的两倍。由于这些原因,本研究强调了设计标准(在PDMS上使用纳米特征的微米图案),这可能有助于新一代血管移植物的智能设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号