...
首页> 外文期刊>Nano letters >Competing Ultrafast Energy Relaxation Pathways in Photoexcited Graphene
【24h】

Competing Ultrafast Energy Relaxation Pathways in Photoexcited Graphene

机译:光激发石墨烯中竞争性超快能量弛豫途径

获取原文
获取原文并翻译 | 示例
           

摘要

For most optoelectronic applications of graphene, a thorough understanding of the processes that govern energy relaxation of photoexcited carriers is essential. The ultrafast energy relaxation in graphene occurs through two competing pathways:carrier-carrier scattering, creating an elevated carrier temperature, and optical phonon emission. At present, it is not clear what determines the dominating relaxation pathway. Here we reach a unifying picture of the ultrafast energy relaxation by investigating the terahertz photoconductivity, while varying the Fermi energy, photon energy and fluence over a wide range. We find that sufficiently low fluence (?4 μJ/cm~2) in conjunction with sufficiently high Fermi energy (?0.1 eV) gives rise to energy relaxation that is dominated by carrier-carrier scattering, which leads to efficient carrier heating. Upon increasing the fluence or decreasing the Fermi energy, the carrier heating efficiency decreases, presumably due to energy relaxation that becomes increasingly dominated by phonon emission. Carrier heating through carrier-carrier scattering accounts for the negative photoconductivity for doped graphene observed at terahertz frequencies. We present a simple model that reproduces the data for a wide range of Fermi levels and excitation energies and allows us to qualitatively assess how the branching ratio between the two distinct relaxation pathways depends on excitation fluence and Fermi energy.
机译:对于大多数石墨烯的光电应用,必须全面了解控制光激发载流子能量弛豫的过程。石墨烯中的超快能量弛豫通过两个竞争途径发生:载流子-载流子散射,产生升高的载流子温度,以及光子发射。目前,尚不清楚什么决定了主要的松弛途径。在这里,我们通过研究太赫兹光电导率,同时在大范围内改变费米能量,光子能量和注量,得出了超快能量弛豫的统一图景。我们发现足够低的注量(?4μJ/ cm〜2)加上足够高的费米能量(?0.1 eV)会引起能量松弛,该现象由载流子-载流子散射控制,从而导致有效的载流子加热。在增加通量或降低费米能量时,载流子加热效率降低,大概是由于能量弛豫变得越来越主要地由声子发射决定。通过载流子-载流子散射的载流子加热解释了在太赫兹频率下观察到的掺杂石墨烯的负光电导性。我们提出了一个简单的模型,该模型可再现各种费米能级和激发能的数据,并允许我们定性评估两个不同弛豫途径之间的分支比如何取决于激发通量和费米能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号