首页> 外文期刊>Nano Energy >Strong competition between electromagnetic enhancement and surface-energy-transfer induced quenching in plasmonic dye-sensitized solar cells: A generic yet controllable effect
【24h】

Strong competition between electromagnetic enhancement and surface-energy-transfer induced quenching in plasmonic dye-sensitized solar cells: A generic yet controllable effect

机译:等离子体增强染料敏化太阳能电池中电磁增强和表面能转移诱导的猝灭之间的激烈竞争:通用但可控的作用

获取原文
获取原文并翻译 | 示例
           

摘要

Light harvesting strategy using plasmonic metal nanostructures as subwavelength light concentrators provides a highly attractive solution to enhancing the performance of dye-sensitized solar cells (DSSCs). Through comprehensive optical spectroscopy and electrical characterizations together with a theoretical analysis, we demonstrate a strong competition between the surface energy transfer induced non-radiative quenching and the plasmonic electromagnetic enhancement effect in metal-dielectric-semiconductor core-shell-shell nanoparticle doped DSSCs, a generic yet unavoidable phenomenon in all types of plasmonic solar cells. The competition of the two effects results in a non-monotonic relationship between the device efficiency and the thickness of the dielectric shell covering the metal nanoparticles, and leads to an optimal thickness for the highest power conversion efficiency. This observation is further corroborated by photoluminescence spectroscopic measurements. Our experimental results are in good agreement with the Persson model that predicts a strong energy quenching effect when the distance between the photogenerated charge carrier and the metal core is short enough. Both experiment and theory show that the localized surface plasmon resonance enhanced light harvesting efficiency is suppressed by the surface energy transfer to the metal cores for the dielectric shell thickness shorter than a characteristic value (similar to 7 nm in our study). Our work sheds new insights into the fundamental understanding of the photophysics mechanisms of plasmonic DSSCs and could push forward the study of plasmonic solar cells in terms of device design and fabrication. (C) 2016 Elsevier Ltd. All rights reserved.
机译:使用等离激元金属纳米结构作为亚波长聚光器的光收集策略为增强染料敏化太阳能电池(DSSC)的性能提供了极具吸引力的解决方案。通过全面的光谱学和电学表征以及理论分析,我们证明了在掺杂金属-介电半导体核-壳-壳纳米粒子的DSSC中,表面能转移引起的非辐射淬灭与等离子体电磁增强效应之间的激烈竞争。所有类型的等离子太阳能电池中普遍存在但不可避免的现象。两种效应的竞争导致器件效率与覆盖金属纳米颗粒的介电壳的厚度之间存在非单调关系,并导致最佳厚度以获得最高功率转换效率。通过光致发光光谱测量进一步证实了该观察结果。我们的实验结果与Persson模型非常吻合,该模型预测了光生电荷载体和金属核之间的距离足够短时会产生强大的能量猝灭效果。实验和理论均表明,对于介电壳厚度短于特征值(类似于我们的研究结果的7 nm)的表面能,转移到金属芯的表面能会抑制局部表面等离子体共振增强的光收集效率。我们的工作为等离子DSSC的光物理机理的基本理解提供了新的见解,并可能在器件设计和制造方面推动对等离子太阳能电池的研究。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号