首页> 外文期刊>Nano letters >The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: An Ab initio molecular dynamics study
【24h】

The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: An Ab initio molecular dynamics study

机译:锂离子电池中硅负极锂化过程中的混合机理:从头算分子动力学研究

获取原文
获取原文并翻译 | 示例
           

摘要

In order to realize Si as a negative electrode material in commercial Li-ion batteries, it is important to understand the mixing mechanism of Li and Si, and stress evolution during lithiation in Si negative electrode of Li-ion batteries. Available experiments mainly provide the diffusivity of Li in Si as an averaged property, neglecting information regarding diffusivity of Si. However, if Si can diffuse as fast as Li, the stress generated during Li diffusion can be reduced. We, therefore, studied the diffusivity of Li as well as Si atoms in the Si-anode of Li-ion battery using an ab initio molecular dynamics-based methodology. The electrochemical insertion of Li into crystalline Si prompts a crystalline-to-amorphous phase transition. We considered this situation and thus examined the diffusion kinetics of Li and Si atoms in both crystalline and amorphous Si. We find that Li diffuses faster in amorphous Si as compared to crystalline Si, while Si remains relatively immobile in both cases and generates stresses during lithiation. To further understand the mixing mechanism and to relate the structure with electrochemical mixing, we analyzed the evolution of the structure during lithiation and studied the mechanism of breaking of Si-Si network by Li. We find that Li atoms break the Si rings and chains and create ephemeral structures such as stars and boomerangs, which eventually transform to Si-Si dumbbells and isolated Si atoms in the LiSi phase. Our results are found to be in agreement with the available experimental data and provide insights into the mixing mechanism of Li and Si in Si negative electrode of Li-ion batteries.
机译:为了将Si作为商用锂离子电池的负极材料,重要的是了解Li和Si的混合机理以及锂离子电池的Si负极在锂化过程中的应力演化。可用的实验主要提供Li在Si中的扩散率作为平均特性,而忽略了有关Si扩散率的信息。但是,如果Si能够像Li一样快地扩散,则可以减小Li扩散过程中产生的应力。因此,我们使用基于从头算术动力学的方法研究了锂离子电池的Si阳极中Li以及Si原子的扩散率。 Li在晶体硅中的电化学插入促使晶体向非晶相转变。我们考虑了这种情况,因此研究了Li和Si原子在结晶Si和非晶Si中的扩散动力学。我们发现,与晶体硅相比,锂在非晶硅中的扩散速度更快,而硅在两种情况下均保持相对不动并在锂化过程中产生应力。为了进一步了解混合机理并使结构与电化学混合相关,我们分析了锂化过程中结构的演变,并研究了Li破坏Si-Si网络的机理。我们发现Li原子破坏了Si的环和链,并产生了短暂的结构,例如恒星和回旋镖,最终转变为Si-Si哑铃,并在LiSi相中分离出Si原子。发现我们的结果与可用的实验数据相符,并且提供了对锂离子电池的硅负极中锂和硅的混合机理的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号