首页> 外文期刊>KSME International Journal >Computation of a Turbulent Natural Convection in a Rectangular Cavity with the Low-Reynolds-Number Differential Stress and Flux Model
【24h】

Computation of a Turbulent Natural Convection in a Rectangular Cavity with the Low-Reynolds-Number Differential Stress and Flux Model

机译:低雷诺数微分应力与通量模型的矩形腔内湍流自然对流计算

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A numerical study of a natural convection in a rectangular cavity with the low-Reynolds-number differential stress and flux model is presented. The primary emphasis of the study is placed on the investigation of the accuracy and numerical stability of the low-Reynolds-number differential stress and flux model for a natural convection problem. The turbulence model considered in the study is that developed by Peeters and Henkes (1992) and further refined by Dol and Hanjalic (2001), and this model is applied to the prediction of a natural convection in a rectangular cavity together with the two-layer model, the shear stress transport model and the time-scale bound v{sup}2-f model, all with an algebraic heat flux model. The computed results are compared with the experimental data commonly used for the validation of the turbulence models. It is shown that the low-Reynolds-number differential stress and flux model predicts well the mean velocity and temperature, the vertical velocity fluctuation, the Reynolds shear stress, the horizontal turbulent heat flux, the local Nusselt number and the wall shear stress, but slightly under-predicts the vertical turbulent heat flux. The performance of the v{sup}2- f model is comparable to that of the low-Reynolds-number differential stress and flux model except for the over-prediction of the horizontal turbulent heat flux. The two-layer model predicts poorly the mean vertical velocity component and under-predicts the wall shear stress and the local Nusselt number. The shear stress transport model predicts well the mean velocity, but the general performance of the shear stress transport model is nearly the same as that of the two-layer model, under-predicting the local Nusselt number and the turbulent quantities.
机译:利用低雷诺数微分应力和通量模型,对矩形腔内自然对流进行了数值研究。该研究的主要重点是对自然对流问题的低雷诺数微分应力和通量模型的准确性和数值稳定性进行研究。研究中考虑的湍流模型是由Peeters和Henkes(1992)开发的,并由Dol和Hanjalic(2001)进一步完善的,该模型可用于预测矩形腔中的自然对流以及两层模型,剪切应力传递模型和时标边界v {sup} 2-f模型,均具有代数热通量模型。将计算结果与通常用于验证湍流模型的实验数据进行比较。结果表明,低雷诺数微分应力和通量模型可以很好地预测平均速度和温度,垂直速度波动,雷诺剪切应力,水平湍流通量,局部努塞尔数和壁面剪应力,但是略微低估了垂直湍流通量。 v {sup} 2-f模型的性能与低雷诺数微分应力和通量模型的性能相当,除了水平湍流通量的过高预测之外。两层模型对平均垂直速度分量的预测很差,而对壁切应力和局部Nusselt数的预测却不足。剪应力传递模型可以很好地预测平均速度,但是剪应力传递模型的总体性能几乎与两层模型的相同,只是预测了局部Nusselt数和湍流量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号