首页> 外文期刊>Multidimensional systems and signal processing >Bounded real lemma and structured singular value versus diagonal scaling: the free noncommutative setting
【24h】

Bounded real lemma and structured singular value versus diagonal scaling: the free noncommutative setting

机译:有界实引理和结构奇异值与对角线缩放:自由的非交换设置

获取原文
获取原文并翻译 | 示例
           

摘要

The structured singular value (often referred to simply as ) was introduced independently by Doyle and Safonov as a tool for analyzing robustness of system stability and performance in the presence of structured uncertainty in the system parameters. While the structured singular value provides a necessary and sufficient criterion for robustness with respect to a structured ball of uncertainty, it is notoriously difficult to actually compute. The method of diagonal (or simply D) scaling, on the other hand, provides an easily computable upper bound (which we call ) for the structured singular value, but provides an exact evaluation of (or even a useful upper bound for ) only in special cases. However it was discovered in the 1990s that a certain enhancement of the uncertainty structure (i.e., letting the uncertainty parameters be freely noncommuting linear operators on an infinite-dimensional separable Hilbert space) resulted in the -scaling procedure leading to an exact evaluation of (), at least for the tractable special cases which were analyzed in complete detail. On the one hand, this enhanced uncertainty has some appeal from the physical point of view: one can allow the uncertainty in the plant parameters to be time-varying, or more generally, one can catch the uncertainty caused by the designer's decision not to model the more complex (e.g. nonlinear) dynamics of the true plant. On the other hand, the precise mathematical formulation of this enhanced uncertainty structure makes contact with developments in the growing theory of analytic functions in freely noncommuting arguments and associated formal power series in freely noncommuting indeterminates. In this article we obtain the theorem for a more satisfactory general setting.
机译:Doyle和Safonov独立介绍了结构奇异值(通常简称为),作为分析系统稳定性和性能鲁棒性的工具,在系统参数存在结构性不确定性的情况下。尽管结构化奇异值提供了关于不确定性结构化球的鲁棒性的必要和充分标准,但实际上很难计算。另一方面,对角线(或简单地为D)缩放的方法为结构化的奇异值提供了易于计算的上限(我们称之为),但仅在以下情况下提供了对(或什至有用的上限)的精确评估:特别案例。但是,在1990年代发现不确定性结构的某种增强(即,使不确定性参数成为无限维可分离Hilbert空间上的自由非交换线性算子)导致-标度过程导致对()的精确求值,至少对于经过详细分析的难处理的特殊情况。一方面,从物理角度来看,这种增强的不确定性具有一定的吸引力:可以使工厂参数中的不确定性随时间变化,或者更一般而言,可以捕获由设计师决定不建模而导致的不确定性。真实植物的动态更复杂(例如非线性)。另一方面,这种增强的不确定性结构的精确数学公式与不断增长的自由不可交换论证的解析函数理论以及自由不可交换不确定性的相关形式幂级数的发展理论相联系。在本文中,我们获得了更令人满意的一般设置的定理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号