首页> 外文期刊>Molecular physics >Integral-equation theories and mayer-sampling monte carlo: A tandem approach for computing virial coefficients of simple fluids
【24h】

Integral-equation theories and mayer-sampling monte carlo: A tandem approach for computing virial coefficients of simple fluids

机译:积分方程理论和Mayer采样蒙特卡洛:一种用于计算简单流体的病毒系数的串联方法

获取原文
获取原文并翻译 | 示例
           

摘要

Mayer-sampling Monte Carlo (MSMC) has enabled computation of higher-order virial coefficients than previously possible for a variety of potential models, but it is not required for computation of the entire virial coefficient for models that are spherically symmetric: approximations that result from the hypernetted-chain (HNC) or Percus-Yevick (PY) integral-equation theories in conjunction with the compressibility equation (c) or virial equation (v) can be computed quickly by fast Fourier transforms. For the fourth and fifth virial coefficients of the Lennard-Jones potential (with parameters σ and ε), we demonstrate that the corrections to each of the four approximations (HNC(c), HNC(v), PY(c), and PY(v)) are faster to compute to a desired precision by MSMC than the full coefficient itself, with the exception of the PY(v) correction at fifth order, and that the optimal decomposition with regard to precision can be identified using a fraction of the steps required to obtain precise virial coefficients. At reduced temperatures kT/ε greater than 4, the PY(c) correction is fastest to compute by MSMC at both fourth and fifth orders. For lower temperatures, the HNC(v) decomposition is most efficient at fourth order, while the HNC(c) decomposition is most efficient at fifth order. These results are specific to the Lennard-Jones potential, but the method for determining the optimal decomposition is applicable to any spherically symmetric potential.
机译:Mayer采样蒙特卡洛(MSMC)可以计算出比以前可能的多种潜在模型更高的维里系数,但是对于球对称模型,不需要计算整个维里系数:超网链(HNC)或Percus-Yevick(PY)积分方程理论与可压缩性方程(c)或维里尔方程(v)可以通过快速傅立叶变换快速计算。对于Lennard-Jones势的第四和第五维里系数(具有参数σ和ε),我们证明了对四个近似值(HNC(c),HNC(v),PY(c)和PY)的校正(v))可以通过MSMC比全系数本身更快地计算到所需的精度,但五阶的PY(v)校正除外,并且可以使用分数的小数来确定关于精度的最佳分解获得精确维里系数的步骤。在降低的温度kT /ε大于4时,MSY以四阶和五阶计算PY(c)校正最快。对于较低的温度,HNC(v)分解在四阶时最有效,而HNC(c)分解在五阶时最高效。这些结果特定于Lennard-Jones势,但是确定最佳分解的方法适用于任何球对称势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号