首页> 外文期刊>Molecular ecology >Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis)
【24h】

Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis)

机译:尽管遗传漂移剧烈,但适应性差异:导致岛狐(Urocyon littoralis)遗传分化的进化机制的基因组分析

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small N-e (range = 2.1-89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6-6.6% of loci as high F-ST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential.
机译:长期以来,引起岛屿生物多样性的进化机制一直吸引着进化生物学家。据预测,岛屿上的遗传漂移和差异选择很强,并且两者都可能导致种群差异和物种形成。或者,强烈的遗传漂移可能会阻止适应。我们进行了基因组分析,以测试遗传漂移和趋异选择在引起岛狐(Urocyon littoralis)种群之间的遗传分化中的作用。该物种由六个亚种组成,每个亚种都占据一个不同的加利福尼亚海峡群岛。对使用限制性位点相关DNA(RAD)测序产生的5293个SNP位点的分析发现,遗传漂移作为驱动岛狐种群间种群分化的主要进化机制,为遗传漂移提供了支持。特别是,种群的遗传变异极低,N-e小(范围= 2.1-89.7;中位数= 19.4),并且瓶颈的遗传特征明显。此外,具有最低遗传变异的岛(并且据推断是最强的历史遗传漂移)在遗传上与大陆灰狐有最大的区别,反之亦然,这表明遗传漂移推动了全基因组的分化。尽管如此,离群值测试仍将3.6-6.6%的基因座定为高F-ST离群值,这表明尽管遗传漂移很强,但差异选择仍会导致种群差异。基于高FST异常值的总体之间的相似性模式反映了基于形态的模式,提供了额外的证据表明异常值反映了适应性差异。在某些岛狐种群中,特别是在圣尼古拉斯岛,狐狸的遗传变异极低,Ne极低,这表明它们可能易受有害等位基因的固定,适应性下降和适应能力下降。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号