...
首页> 外文期刊>Biochemistry >Redesign of cytochrome c peroxidase into a manganese peroxidase: role of tryptophans in peroxidase activity.
【24h】

Redesign of cytochrome c peroxidase into a manganese peroxidase: role of tryptophans in peroxidase activity.

机译:将细胞色素c过氧化物酶重新设计为锰过氧化物酶:色氨酸在过氧化物酶活性中的作用。

获取原文
获取原文并翻译 | 示例
           

摘要

Trp191Phe and Trp51Phe mutations have been introduced into an engineered cytochrome c peroxidase (CcP) containing a Mn(II)-binding site reported previously (MnCcP; see Yeung, B. K.-S., et al. (1997) Chem. Biol. 5, 215-221). The goal of the present study is to elucidate the role of tryptophans in peroxidase activity since CcP contains both Trp51 and Trp191 while manganese peroxidase (MnP) contains phenylalanine residues at the corresponding positions. The presence of Trp191 in CcP allows formation of a unique high-valent intermediate containing a ferryl oxo and tryptophan radical called compound I'. The absence of a tryptophan residue at this position in MnP is the main reason for the formation of an intermediate called compound I which contains a ferryl oxo and porphyrin pi-cation radical. In this study, we showed that introduction of the Trp191Phe mutation to MnCcP did not improve MnP activity (specific activity: MnCcP, 0.750 micromol min-1 mg-1; MnCcP(W191F), 0.560 micromol min-1 mg-1. k(cat)/K(m): MnCcP, 0.0517 s-1 mM-1; MnCcP(W191F), 0.0568 s-1 mM-1) despite the fact that introduction of the same mutation to WTCcP caused the formation of a transient compound I (decay rate, 60 s-1). However, introducing both the Trp191Phe and Trp51Phe mutations not only resulted in a longer lived compound I in WTCcP (decay rate, 18 s-1), but also significantly improved MnP activity in MnCcP (MnCcP(W51F, W191F): specific activity, 8.0 micromol min-1 mg-1; k(cat)/K(m), 0. 599 s-1 mM-1). The increase in activity can be attributed to the Trp51Phe mutation since MnCcP(W51F) showed significantly increased MnP activity relative to MnCcP (specific activity, 3.2 micromol min-1 mg-1; k(cat)/K(m), 0.325 s-1 mM-1). As with MnP, the activity of MnCcP(W51F, W191F) was found to increase with decreasing pH. Our results demonstrate that, while the Trp191Phe and Trp51Phe mutations both play important roles in stabilizing compound I, only the Trp51Phe mutation contributes significantly to increasing the MnP activity because this mutation increases the reactivity of compound II, whose oxidation of Mn(II) is the rate-determining step in the reaction mechanism.
机译:Trp191Phe和Trp51Phe突变已被引入到先前报道的含有Mn(II)结合位点的工程化细胞色素C过氧化物酶(CcP)中(MnCcP;参见Yeung,BK-S。,et al。(1997)Chem.Biol.5 215-221)。本研究的目的是阐明色氨酸在过氧化物酶活性中的作用,因为CcP包含Trp51和Trp191两者,而锰过氧化物酶(MnP)在相应位置包含苯丙氨酸残基。在CcP中Trp191的存在允许形成独特的高价中间体,该中间体含有一个羰基氧基和色氨酸基团,称为化合物I'。 MnP中此位置不存在色氨酸残基是形成称为化合物I的中间体的主要原因,该化合物包含一个氧代羰基和卟啉pi-阳离子基团。在这项研究中,我们表明将Trp191Phe突变引入MnCcP不会提高MnP活性(比活性:MnCcP,0.750 micromol min-1 mg-1; MnCcP(W191F),0.560 micromol min-1 mg-1。k( cat)/ K(m):MnCcP,0.0517 s-1 mM-1; MnCcP(W191F),0.0568 s-1 mM-1),尽管在WTCcP中引入了相同的突变导致形成了瞬态化合物I (衰减率:60 s-1)。但是,同时引入Trp191Phe和Trp51Phe突变不仅导致WTCcP中的化合物I寿命更长(衰减速率为18 s-1),而且还显着提高了MnCcP中的MnP活性(MnCcP(W51F,W191F):比活,8.0微摩尔分钟-1 mg-1; k(cat)/ K(m),0。599 s-1 mM-1)。活性增加可归因于Trp51Phe突变,因为MnCcP(W51F)相对于MnCcP表现出明显增加的MnP活性(比活性,3.2 micromol min-1 mg-1; k(cat)/ K(m),0.325 s- 1 mM-1)。与MnP一样,发现MnCcP(W51F,W191F)的活性随pH的降低而增加。我们的结果表明,虽然Trp191Phe和Trp51Phe突变都在稳定化合物I中起着重要作用,但是只有Trp51Phe突变才显着增加MnP活性,因为该突变增加了化合物II的反应性,而化合物II的氧化是Mn(II)。反应机理中的速率决定步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号