...
首页> 外文期刊>Measurement Science & Technology >Ultra-precision geometrical measurement technique based on a statistical random phase clock combined with acoustic-optical deflection
【24h】

Ultra-precision geometrical measurement technique based on a statistical random phase clock combined with acoustic-optical deflection

机译:基于统计随机相位时钟结合声光偏转的超精密几何测量技术

获取原文
获取原文并翻译 | 示例

摘要

Mask writers and large area measurements systems are key systems for production of large liquid crystal displays (LCD) and image devices. With position tolerances in the sub-(mu)m range over square meter sized masks, the metrology challenges are indeed demanding. Most systems used for this type of measurement rely on a microscope camera imaging system, provided with a charge coupled device, a complementary metal-oxide-semiconductor sensor or a time delay and integration sensor to transform the optical image to a digital gray-level image. From this image, processing algorithms are used to extract information such as location of edges. The drawback of this technique is the vast amount of data captured but never used. This paper presents a new approach for ultra-high-precision lateral measurement at nm-levels of chrome/glass patterns separated by centimeters, so called registration marks, on masks used for the LCD manufacturing. Registration specifications demand a positioning accuracy <200 nm and critical dimensions, i.e. chrome line widths, which need to be accurate in the 80 nm range. This accuracy has to be achieved on glass masks of 2.4 X 1.6 m~(2) size. Our new measurement method is based on nm-precise lateral scanning of a focused laser beam combined with statistical random phase sampling of the reflected signal. The precise scanning is based on an extremely accurate time measuring device controlling an acousto optic deflector crystal. The method has been successfully applied in measuring the 4 (mu)m pitch of reference gratings at standard deviations sigma of 0.5 nm and registration marks separated by several cm at standard deviations of 23 nm.
机译:掩模写入器和大面积测量系统是生产大型液晶显示器(LCD)和图像设备的关键系统。在超过平方米尺寸的掩模的亚微米范围内的位置公差的情况下,计量挑战确实是严峻的。用于此类测量的大多数系统都依赖于显微镜相机成像系统,该系统配有电荷耦合装置,互补金属氧化物半导体传感器或时间延迟和积分传感器,可将光学图像转换为数字灰度图像。从该图像中,使用处理算法来提取信息,例如边缘的位置。该技术的缺点是捕获了大量但从未使用过的数据。本文提出了一种新的方法,用于在用于LCD制造的掩模上的铬/玻璃图案的纳米级(以厘米为单位)上进行纳米级的超高精度横向测量,即所谓的套准标记。配准规范要求定位精度<200 nm和关键尺寸,即镀铬线宽,必须在80 nm范围内准确。这种精度必须在尺寸为2.4 X 1.6 m〜(2)的玻璃口罩上实现。我们的新测量方法基于聚焦激光束的nm精确横向扫描以及反射信号的统计随机相位采样。精确的扫描基于控制声光偏转器晶体的极其精确的时间测量设备。该方法已成功地用于在标准偏差sigma为0.5 nm的情况下测量参考光栅的4μm间距,在标准偏差为23 nm的情况下以几厘米的距离隔开的对准标记。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号